Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp hàm đặc trưng giải nhanh trắc nghiệm mũ - logarit - Hoàng Thanh Phong

Tài liệu gồm 41 trang, được biên soạn bởi thầy giáo Hoàng Thanh Phong, hướng dẫn phương pháp hàm đặc trưng giải nhanh trắc nghiệm mũ – logarit (có kết hợp tư duy, mẹo giải nhanh và máy tính Casio), đây là lớp bài toán vận dụng – vận dụng cao (VD – VDC) / nâng cao / khó, nhiều khả năng sẽ xuất hiện trong đề thi tốt nghiệp THPT môn Toán của Bộ Giáo dục và Đào tạo. Trích dẫn tài liệu phương pháp hàm đặc trưng giải nhanh trắc nghiệm mũ – logarit – Hoàng Thanh Phong: + Có bao nhiêu cặp số nguyên (x;y) thỏa mãn 1 ≤ x ≤ 2020 và x + x^2 – 9^y = 3^y. + Có bao nhiêu giá trị nguyên dương của tham số m nhỏ hơn 2018 để phương trình log2 (m + √(m + 2^x)) = 2x có nghiệm thực? + Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn biểu thức sau log4 (x + y + 3) = log5 (x^2 + y^2 + 2x + 4y + 5)? Xem thêm : Phương pháp hàm số đặc trưng – Nguyễn Văn Rin

Nguồn: toanmath.com

Đăng nhập để đọc

32 bài toán phương trình và bất phương trình mũ - logarit chứa tham số
Tài liệu gồm 25 trang, được biên soạn bởi thầy giáo Phạm Văn Nghiệp, tuyển chọn 32 bài toán phương trình và bất phương trình mũ – logarit chứa tham số có đáp án và lời giải chi tiết; tài liệu hỗ trợ học sinh lớp 12 trong quá trình học thêm chương trình Toán 12 phần Giải tích chương 2: Hàm số lũy thừa, hàm số mũ và hàm số logarit. Trích dẫn tài liệu 32 bài toán phương trình và bất phương trình mũ – logarit chứa tham số: + Cho phương trình 4 10 2 16 3 0 x x x m với m là tham số thực. Có bao nhiêu số nguyên m để phương trình có hai nghiệm thực phân biệt? + Gọi S là tập hợp nghiệm nguyên của bất phương trình 2 2 2 2 2 log 2 2 log 2 log x mx mx x. Có bao nhiêu giá trị nguyên của tham số m để tập hợp S có đúng 8 phần tử? + Cho hàm số bậc 4 có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m và m 2021 2021 để phương trình 3 2 log f x x f x mx mx f x mx có hai nghiệm phân biệt dương? + Có bao nhiêu giá trị nguyên của tham số a thuộc 20 20 để bất phương trình 2 3 3 3 log log 1 0 x a x a có không quá 20 nghiệm nguyên? + Cho phương trình 3 2020 log 2021 x a x với a là số thực dương. Biết tích các nghiệm của phương trình là 32. Mệnh đề nào sau đây là đúng?
Phương pháp đánh giá và sử dụng tính đơn điệu hàm số để giải PT - BPT mũ và lôgarit
Tài liệu gồm 45 trang, được tổng hợp bởi thầy giáo Lê Bá Bảo, hướng dẫn phương pháp đánh giá và sử dụng tính đơn điệu của hàm số để giải phương trình và bất phương trình mũ và lôgarit, giúp học sinh tham khảo khi học chương trình Giải tích 12 chương 2: Hàm số lũy thừa, hàm số mũ và hàm số logarit. Trích dẫn tài liệu phương pháp đánh giá và sử dụng tính đơn điệu hàm số để giải PT – BPT mũ và lôgarit: + THPT GIA LỘC – HẢI DƯƠNG NĂM 2018 – 2019 LẦN 02: Cho hai số thực a b thỏa mãn 100 40 16 4 log log log12 a b a b. Giá trị của a b bằng? + THPT CHUYÊN BẮC GIANG NĂM 2018 – 2019 LẦN 01: Phương trình 2 3 5 6 2 5 x x x có một nghiệm dạng loga x b b với ab là các số nguyên dương thuộc khoảng 1 7. Khi đó a b 2 bằng? + THPT YÊN ĐỊNH – THANH HÓA 2018 2019 LẦN 2: Cho xy là hai số thực không âm thỏa mãn 2 2 2 1 2 1 log 1 y x x y x. Giá trị nhỏ nhất của biểu thức 2 1 2 4 2 1 x P e x y là? + THPT CHUYÊN THÁI BÌNH NĂM 2018 – 2019 LẦN 04: Cho các số thực x y với x 0 thỏa mãn e e e e 3 1 1 3 1 1 1 3 x y xy xy x y x y y. Gọi m là giá trị nhỏ nhất của biểu thức T x y 2 1. Mệnh đề nào sau đây đúng? + THPT CHUYÊN VĨNH PHÚC LẦN 02 NĂM 2018 – 2019: Biết rằng phương trình e e 2cos x x ax a là tham số có 3 nghiệm thực phân biệt. Hỏi phương trình e e 2cos 4 x x ax có bao nhiêu nghiệm thực phân biệt?
Bài toán GTLN - GTNN biểu thức mũ - lôgarit nhiều biến số
Tài liệu gồm 36 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán GTLN – GTNN biểu thức mũ – lôgarit nhiều biến số; đây là dạng toán VDC thường gặp trong chương trình Toán 12 phần Giải tích chương 2. BÀI TOÁN GTLN – GTNN BIỂU THỨC MŨ – LOGARIT HAI BIẾN SỐ Cách 1: Đánh giá áp dụng BĐT cơ bản đã biết như BĐT Côsi và BĐT Bunhiacopxki. Cách 2: Áp dụng phương pháp hàm số, hàm đặc trưng. Thông thường ta thực hiện theo các bước sau: Biến đổi các số hạng chứa trong biểu thức về cùng một đại lượng giống nhau. Đưa vào một biến mới t bằng cách đặt t bằng đại lượng đã được biến đổi như trên. Xét hàm số f t theo biến t. Khi đó ta hình thành được bài toán tương đương sau: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số f t với t D. Lúc này ta sử dụng đạo hàm để tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số f t với t D. Chú ý : Ta chứng minh được: Nếu hàm số y fx luôn đồng biến (hoặc luôn nghịch biến) và liên tục trên D mà phương trình fx k có nghiệm thì nghiệm đó là nghiệm duy nhất trên D. Nếu hàm số y fx luôn đồng biến (hoặc luôn nghịch biến) và hàm số y gx luôn nghịch biến (hoặc luôn đồng biến) và liên tục trên D mà phương trình f x gx có nghiệm thì nghiệm đó là nghiệm duy nhất trên D. Nếu hàm số y fx luôn đồng biến (hoặc luôn nghịch biến) và liên tục trên D thì fx fy nếu x y (hoặc x y). Cách 3: Áp dụng hình học giải tích. BÀI TOÁN GTLN – GTNN BIỂU THỨC MŨ – LOGARIT NHIỀU BIẾN SỐ Cho xyz lần lượt là các số thực dương và thỏa mãn hệ phương trình sau 3log 3 3log 27 log 81 0 x y 3 3 x z xy yz. Khi biểu thức 5 4 P xyz đạt giá trị nhỏ nhất thì giá trị của 1000P nằm trong khoảng nào? Cho các số thực không âm abc thỏa mãn 2484 abc. Gọi M m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức S a b c 2 3. Giá trị của biểu thức 4 log M M m bằng? Cho ba số thực thay đổi abc 1 thỏa mãn abc 6. Gọi 1 2 x x là hai nghiệm của phương trình 2 log 2 log 3log log 2022 0 a a aa x b cx. Khi đó giá trị lớn nhất của 1 2 x x là?
Tìm điều kiện của x để bất phương trình mũ - lôgarit đúng với y thỏa mãn điều kiện
Tài liệu gồm 14 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán Tìm điều kiện của x để bất phương trình mũ – lôgarit đúng với y thỏa mãn điều kiện cho trước; đây là dạng toán thường gặp trong chương trình Toán 12 phần Giải tích chương 2. PHƯƠNG PHÁP: Bước 1 : Biến đổi bất phương trình về dạng f a f b f a f b f a f b f a f b. Bước 2 : Xét hàm số y f x chứng minh hàm số luôn đồng biến, hoặc luôn nghịch biến Bước 3 : Do tính chất đồng biến hoặc nghịch biến của hàm số f a f b a b nếu hàm số đồng biến f a f b a b nếu hàm số nghịch biến. Cho các số nguyên dương x y không lớn hơn 4022. Biết mỗi giá trị của y luôn có ít nhất 2021 giá trị của x thỏa mãn bất phương trình 2 2 3 3 log 3 3 x y y x y xx y. Hỏi có bao nhiêu giá trị của y? Có bao nhiêu số nguyên dương y sao cho ứng với mỗi giá trị của y bất phương trình log 11 log 0 3 3 x x y x có nghiệm nguyên x và có không quá 10 số nguyên x thỏa mãn? Cho các số x y a thoả mãn 1 2048 1 x y a và 1 2 2 log 1 2 2 1 x a a x xy x y x a y a. Có bao nhiêu giá trị của a 100 để luôn có 2048 cặp số nguyên x y? Gọi S là tập tất cả các giá trị nguyên của y để bất phương trình 2 3 2 2 2 log 3 3 log 3 log y xy xy y. Có bao nhiêu giá trị nguyên của x để tập hợp S có đúng 9 phần tử?

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6