Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi lớp 12 môn Toán năm 2019 2020 sở GD ĐT Quảng Trị

Nội dung Đề thi chọn học sinh giỏi lớp 12 môn Toán năm 2019 2020 sở GD ĐT Quảng Trị Bản PDF Ngày 02 tháng 10 năm 2019, sở Giáo dục và Đào tạo tỉnh Quảng Trị tổ chức kỳ thi chọn học sinh giỏi văn hóa lớp 12 THPT môn Toán năm học 2019 – 2020. Đề thi chọn học sinh giỏi Toán lớp 12 năm 2019 – 2020 sở GD&ĐT Quảng Trị gồm 05 bài toán, thời gian làm bài 180 phút, đề thi gồm có 01 trang. Trích dẫn đề thi chọn học sinh giỏi Toán lớp 12 năm 2019 – 2020 sở GD&ĐT Quảng Trị : + Có hai dãy ghế đối diện nhau, mỗi dãy có bốn ghế. Xếp ngẫu nhiên 8 học sinh, gồm 4 nam và 4 nữ, ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Tính xác suất để mỗi học sinh nam đều ngồi đối diện với một học sinh nữ. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình thoi với góc ABC = 60 độ, BC = a. Biết tam giác SAB đều, tam giác SCD vuông tại C và nằm trong mặt phẳng hợp với mặt phẳng đáy một góc 60 độ. Tính thể tích khối chóp S.ABCD và khoảng cách từ B đến mặt phẳng (SAD) theo a. + Cho tam giác nhọn ABC (AB < AC) có các đường cao AD, BE và CF đồng quy tại H. Gọi G là giao điểm BH và DF, L là giao điểm của BC và EF, O là tâm đường tròn ngoại tiếp tam giác BCH, K là trung điểm của BC. Chứng minh H là trực tâm tam giác AKL và LG vuông góc AO.

Nguồn: sytu.vn

Đăng nhập để đọc

Đề thi chọn HSG tỉnh lớp 12 môn Toán năm 2017 2018 sở GD ĐT Quảng Bình
Nội dung Đề thi chọn HSG tỉnh lớp 12 môn Toán năm 2017 2018 sở GD ĐT Quảng Bình Bản PDF Ngày 22 tháng 03 năm 2018, sở Giáo dục và Đào tạo tỉnh Quảng Bình tổ chức kỳ thi chọn học sinh giỏi tỉnh môn Toán lớp 12 THPT năm học 2017 – 2018. Đề thi chọn HSG tỉnh Toán lớp 12 năm 2017 – 2018 sở GD&ĐT Quảng Bình gồm 01 trang với 05 bài toán, thời gian làm bài 180 phút, đề thi có hướng dẫn chấm. Trích dẫn đề thi chọn HSG tỉnh Toán lớp 12 năm 2017 – 2018 sở GD&ĐT Quảng Bình : + Viết phương trình tiếp tuyến với đồ thị (C): y = x/(x – 1), biết rằng khoảng cách từ tâm đối xứng của đồ thị (C) đến tiếp tuyến là lớn nhất. [ads] + Cho hình chóp S.ABCD có đáy ABCD là một hình bình hành. Gọi K là trung điểm của SC. Giả sử (P) là mặt phẳng đi qua hai điểm A, K và luôn cắt các cạnh SB, SD lần lượt tại M, N (M, N không trùng S). a. Chứng minh rằng: SB/SM + SD/SN = 3. b. Gọi V1 và V theo thứ tự là thể tích của khối chóp S.AMKN và S.ABCD. Xác định vị trí của mặt phẳng (P) để tỷ số V1/ V đạt giá trị lớn nhất. + Cho a, b, c là các số thực không âm, thỏa mãn a + b + c = 3. Chứng minh rằng: a^2/(b^2 + 1) + b^2/(c^2 + 1) + c^2/(a^2 + 1) ≥ 3/2.
Đề thi chọn HSG tỉnh lớp 12 môn Toán THPT năm 2017 2018 sở GD và ĐT Hà Tĩnh
Nội dung Đề thi chọn HSG tỉnh lớp 12 môn Toán THPT năm 2017 2018 sở GD và ĐT Hà Tĩnh Bản PDF Đề thi chọn HSG tỉnh Toán lớp 12 THPT năm 2017 – 2018 sở GD và ĐT Hà Tĩnh gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 180 phút, đề nhằm tuyển chọn các em học sinh giỏi môn Toán lớp 12 tại các trường THPT và cở sở GD – ĐT trên toàn tỉnh Hà Tĩnh, đề thi HSG Toán lớp 12 có lời giải chi tiết . Trích dẫn đề thi chọn HSG tỉnh Toán lớp 12 : + Một công ty sữa muốn thiết kế hộp đựng sữa với thể tích hộp là 1dm3, hộp được thiết kế bởi một trong hai mẫu sau với cùng một loại vật liệu: mẫu 1 là hình hộp chữ nhật; mẫu 2 là hình trụ. Biết rằng chi phí làm mặt hình tròn cao hơn 1,2 lần chi phí làm mặt hình chữ nhật với cùng diện tích. Hỏi thiết kế hộp theo mẫu nào sẽ tiết kiệm chi phí hơn? (xem diện tích các phần nối giữa các mặt là không đáng kể). + Cho hàm sốy = (2x + 3)/(x + 2) có đồ thị (C) và đường thẳng d: y = -2x + m. Chứng minh rằng d cắt (C) tại hai điểm A, B phân biệt với mọi số thực m. Gọi k1, k2 lần lượt là hệ số góc của tiếp tuyến của (C) tại A và B. Tìm m để k1 + k2 = 4. [ads] + Cho hình chóp S.ABCD có đáy là hình thoi, AB = AC = a; tam giác SBD đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi M là trung điểm của cạnh SC, mặt phẳng (ABM) chia khối chóp S.ABCD thành hai khối đa diện. a. Tính thể tích của khối đa diện không chứa điểm S. b. Tính khoảng cách giữa hai đường thẳng SA và BM.
Đề thi HSG lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Quảng Ninh (Bảng A)
Nội dung Đề thi HSG lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Quảng Ninh (Bảng A) Bản PDF Đề thi HSG Toán lớp 12 năm học 2017 – 2018 sở GD và ĐT Quảng Ninh (Bảng A) gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi học sinh giỏi Toán lớp 12 có lời giải chi tiết .
Đề thi chọn học sinh giỏi lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Nam Định
Nội dung Đề thi chọn học sinh giỏi lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Nam Định Bản PDF Đề thi chọn học sinh giỏi Toán lớp 12 năm học 2017 – 2018 sở GD và ĐT Nam Định gồm 2 phần: 40 câu hỏi trắc nghiệm khách quan, thời gian làm bài 60 phút, 5 bài toán tự luận, thời gian làm bài 75 phút, đề thi nhằm chọn lọc các em HSG môn Toán lớp 12 THPT tại các trường THPT trên toàn tỉnh Nam Định. Trích dẫn đề thi chọn học sinh giỏi Toán lớp 12 năm học 2017 – 2018 : + Trong không gian với hệ tọa độ Oxyz, cho A(a,0,0), B(0,b,0), C(0,0,c) với a, b, c là các số thực thay đổi, khác 0 và thỏa mãn a + b + c = 6. Gọi tâm mặt cầu ngoại tiếp tứ diện OABC là I. Giá trị nhỏ nhất của OI bằng? [ads] + Cho X là tập hợp các số tự nhiên có 4 chữ số khác nhau được lập từ các số 1, 2, 3, 4, 5, 6. Lấy ngẫu nhiên một số thuộc X. Xác suất để lấy được một số chia hết cho 45 là? +  Có bao nhiêu giá trị m nguyên dương nhỏ hơn 10 để đồ thị hàm số y = x^3 – mx + m – 1 có hai điểm cực trj nằm về 2 phía của trục Ox?

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6