Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Số phức và các phép toán về số phức - Diệp Tuân

Tài liệu gồm 80 trang, được biên soạn bởi thầy giáo Diệp Tuân, hướng dẫn giải các dạng toán số phức và các phép toán về số phức trong chương trình Giải tích 12 chương 4 bài số 1. Khái quát nội dung tài liệu số phức và các phép toán về số phức – Diệp Tuân: Nhóm bài toán 1 . Tính toán cộng trừ, nhân chia các số phức. + Áp dụng các công thức cộng, trừ, nhân, chia và lũy thừa số phức. + Số phức và thuộc tính của nó. + Lũy thừa đơn vị ảo. Nhóm bài toán 2 . Hai số phức bằng nhau. + Áp dụng các công thức cộng, trừ, nhân, chia số phức để rút gọn đưa về tính chất hai số phức bằng nhau. + a + bi = c + di khi và chỉ khi a, b, c, d thuộc R. Nhóm bài toán 3 . Tính toán số phức có chứa lũy thừa đơn vị ảo i^n. + Áp dụng các công thức lũy thừa đơn vị ảo. + Áp dụng các phép toán cộng trừ, nhân chai số phức. [ads] Nhóm bài toán 4 . Tìm phần thực, phần ảo, số phức liên hợp và môđun của z, w. + Áp dụng phép chia hai số phức, ta cần nhân thêm số phức liên hợp của mẫu số. + Nếu sử dụng casio, ta chuyển về chế độ CMPLX (mode 2) (i tương ứng ENG). + Khi bài toán yêu cầu tìm các thuộc tính của số phức (phần thực, phần ảo, môđun hoặc số phức liên hợp) mà đề bài cho giả thiết chứa hai thành phần trong ba thành phần thì ta sẽ gọi số phức z rồi sau đó thu gọn và sử dụng kết quả hai số phức bằng nhau, giải hệ. Nhóm bài toán 5 . Các số phức z thỏa mãn biểu thức số phức là số thực, số thuần ảo. + Số phức z thuần ảo ⇔ phần thực a = 0. + Số phức z là số thực ⇔ phần ảo b = 0. Nhóm bài toán 6 . Nhóm bài toán lấy môđun hai vế của đẳng thức số phức. + Sử dụng phép kéo theo của hai số phức bằng nhau. + Kỹ thuật này chỉ được thực hiện được khi biểu thức giả thiết của bài toán được đưa về các dạng chuẩn. Nhóm bài toán 7 . Chuẩn hóa số phức. 

Nguồn: toanmath.com

Đăng nhập để đọc

4 đề trắc nghiệm chuyên đề số phức - Bùi Thế Việt
Tài liệu gồm 44 trang bao gồm 4 đề trắc nghiệm chuyên đề số phức do tác giả Bùi Thế Việt biên soạn, mỗi đề gồm 105 câu trắc nghiệm số phức với phần lớn là các câu hỏi và bài toán có độ khó cao, tài liệu thích hợp để tìm hiểu và rèn luyện các bài toán vận dụng cao về chủ đề số phức, đây là dạng toán thường được sử dụng để phát triển các câu phân loại trong đề thi THPT Quốc gia môn Toán, đề tuyển sinh Đại học – Cao đẳng môn Toán. Trích dẫn tài liệu 4 đề trắc nghiệm chuyên đề số phức – Bùi Thế Việt : + Cho số phức u = 2 − 5i và v = −3 + 2i. Nhận xét nào sau đây là sai? A. u − v = 5 − 7i. B. 3u − v = 9 + 9i. C. u + v = −1 − 3i. D. 2u − 3v = 13 − 16i. [ads] + Khi số phức z thay đổi tùy ý thì tập hợp các số 2z + 2z‾ là? A. Tập hợp các số thực dương. B. Tập hợp các số thực không âm. C. Tập hợp các số thực. D. Tập hợp các số phức không phải số ảo. + Tìm tập hợp điểm biểu diễn số phức z thỏa mãn |z − 3| = |z + i|. A. Đường thẳng y = −4x + 1. B. Đường thẳng y = −5x + 3. C. Đường thẳng y = −3x + 4. D. Đường thẳng y = −x + 3.
600 câu hỏi trắc nghiệm chuyên đề số phức - Nhóm Toán
Tài liệu 600 câu hỏi trắc nghiệm chuyên đề số phức được biên soạn bởi quý thầy, cô giáo trên groups Nhóm Toán gồm 80 trang tuyển chọn các bài toán số phức hay và đặc sắc, giúp tạo nguồn đề cho giáo viên và giúp học sinh có thêm nhiều bài tập để rèn luyện nâng cao kỹ năng giải toán trắc nghiệm số phức, tài liệu đáp ứng xu hướng đề thi trắc nghiệm môn Toán mà Bộ Giáo dục và Đào tạo đang triển khai. 600 câu hỏi số phức trong tài liệu được được chia nhỏ thành 7 đề, mỗi đề gồm 70 đến 100 câu, các câu hỏi đều có đáp án, thầy, cô và các em có thể tra cứu đáp án câu hỏi dựa vào bảng đáp án ở sau mỗi đề. Trích dẫn tài liệu 600 câu hỏi trắc nghiệm chuyên đề số phức – Nhóm Toán : + Trong các kết luận sau, kết luận nào sai? A. Mô đun của số phức z là một số thực. B. Mô đun của số phức z là một số thực dương. C. Mô đun của số phức z là một số phức. D. Mô đun của số phức z là một số thực không âm. [ads] + Gọi A là điểm biểu diễn của số phức z = 3 +2i và B là điểm biểu diễn của số phức z’ = 2 + 3i. Tìm mệnh đề đúng của các mệnh đề sau: A. Hai điểm A và B đối xứng với nhau qua gốc tọa độ O. B. Hai điểm A và B đối xứng với nhau qua trục tung. C. Hai điểm A và B đối xứng nhau qua trục hoành. D. Hai điểm A và B đối xứng với nhau qua đường thẳng y = x. + Trong mặt phẳng phức, tập hợp điểm biểu diễn cho số phức z thỏa |z + 3 – 2i| = 4 là: A. Đường tròn tâm I(-3;2), bán kính R = 4. B. Đường tròn tâm I(3;-2), bán kính R = 16. C. Đường tròn tâm I(3;-2), bán kính R = 4. D. Đường tròn tâm I(-3;2), bán kính R = 16.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6