Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 - 2022 sở GDĐT Cần Thơ

Thứ Ba ngày 16 tháng 11 năm 2021, sở Giáo dục và Đào tạo thành phố Cần Thơ tổ chức kỳ thi chọn đội tuyển học sinh giỏi THPT môn Toán học dự thi cấp Quốc gia năm học 2021 – 2022. Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD&ĐT Cần Thơ gồm 06 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề chọn đội tuyển thi HSG QG môn Toán năm 2022 sở GD&ĐT Cần Thơ : + Cho tam giác ABC không là tam giác cân. Đường tròn tâm I nội tiếp tam giác ABC và tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi P là hình chiếu của D lên EF và M là trung điểm của BC. Hai tia AP và IP cắt đường tròn ngoại tiếp tam giác ABC lần lượt tại G và Q. Chứng minh rằng 4.1. Điểm Q thuộc đường tròn ngoại tiếp tam giác AEF. 4.2. Đường thẳng GD đi qua điểm chính giữa cung BC chứa A. 4.3. Điểm D là tâm đường tròn nội tiếp tam giác QGM. + Cho a, b, c là các số nguyên dương. Chứng minh rằng nếu là số nguyên thì abc là lập phương của một số nguyên. + Một công ty xây dựng đang lên kế hoạch thiết kế một khu phức hợp gồm tổ hợp 7 khu tiện ích hạ tầng tách biệt nhau (khu biệt thự, khu chung cư, trường học, trung tâm thương mại, bệnh viện, trung tâm hành chính và công viên). Ngoài việc tập trung xây dựng hệ thống hạ tầng, công ty này còn đặt ra mục tiêu là tăng cường chất lượng không khí trong khu phức hợp bằng cách xây dựng thêm các lối đi trồng nhiều cây xanh. Nếu xem mỗi khu tiện ích là một điểm trên bảng thiết kế thì người ta có thể thiết kế được nhiều nhất bao nhiêu lối đi với yêu cầu mỗi lối đi là một đường tròn đi qua đúng 4 trong 7 điểm đó.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề thi chọn HSG tỉnh Toán 12 năm 2017 - 2018 sở GDĐT Quảng Bình
Ngày 22 tháng 03 năm 2018, sở Giáo dục và Đào tạo tỉnh Quảng Bình tổ chức kỳ thi chọn học sinh giỏi tỉnh môn Toán 12 THPT năm học 2017 – 2018. Đề thi chọn HSG tỉnh Toán 12 năm 2017 – 2018 sở GD&ĐT Quảng Bình gồm 01 trang với 05 bài toán, thời gian làm bài 180 phút, đề thi có hướng dẫn chấm. Trích dẫn đề thi chọn HSG tỉnh Toán 12 năm 2017 – 2018 sở GD&ĐT Quảng Bình : + Viết phương trình tiếp tuyến với đồ thị (C): y = x/(x – 1), biết rằng khoảng cách từ tâm đối xứng của đồ thị (C) đến tiếp tuyến là lớn nhất. [ads] + Cho hình chóp S.ABCD có đáy ABCD là một hình bình hành. Gọi K là trung điểm của SC. Giả sử (P) là mặt phẳng đi qua hai điểm A, K và luôn cắt các cạnh SB, SD lần lượt tại M, N (M, N không trùng S). a. Chứng minh rằng: SB/SM + SD/SN = 3. b. Gọi V1 và V theo thứ tự là thể tích của khối chóp S.AMKN và S.ABCD. Xác định vị trí của mặt phẳng (P) để tỷ số V1/ V đạt giá trị lớn nhất. + Cho a, b, c là các số thực không âm, thỏa mãn a + b + c = 3. Chứng minh rằng: a^2/(b^2 + 1) + b^2/(c^2 + 1) + c^2/(a^2 + 1) ≥ 3/2.
Đề thi chọn HSG tỉnh Toán 12 THPT năm 2017 - 2018 sở GD và ĐT Hà Tĩnh
Đề thi chọn HSG tỉnh Toán 12 THPT năm 2017 – 2018 sở GD và ĐT Hà Tĩnh gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 180 phút, đề nhằm tuyển chọn các em học sinh giỏi môn Toán lớp 12 tại các trường THPT và cở sở GD – ĐT trên toàn tỉnh Hà Tĩnh, đề thi HSG Toán 12 có lời giải chi tiết . Trích dẫn đề thi chọn HSG tỉnh Toán 12 : + Một công ty sữa muốn thiết kế hộp đựng sữa với thể tích hộp là 1dm3, hộp được thiết kế bởi một trong hai mẫu sau với cùng một loại vật liệu: mẫu 1 là hình hộp chữ nhật; mẫu 2 là hình trụ. Biết rằng chi phí làm mặt hình tròn cao hơn 1,2 lần chi phí làm mặt hình chữ nhật với cùng diện tích. Hỏi thiết kế hộp theo mẫu nào sẽ tiết kiệm chi phí hơn? (xem diện tích các phần nối giữa các mặt là không đáng kể). + Cho hàm sốy = (2x + 3)/(x + 2) có đồ thị (C) và đường thẳng d: y = -2x + m. Chứng minh rằng d cắt (C) tại hai điểm A, B phân biệt với mọi số thực m. Gọi k1, k2 lần lượt là hệ số góc của tiếp tuyến của (C) tại A và B. Tìm m để k1 + k2 = 4. [ads] + Cho hình chóp S.ABCD có đáy là hình thoi, AB = AC = a; tam giác SBD đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi M là trung điểm của cạnh SC, mặt phẳng (ABM) chia khối chóp S.ABCD thành hai khối đa diện. a. Tính thể tích của khối đa diện không chứa điểm S. b. Tính khoảng cách giữa hai đường thẳng SA và BM.
Đề thi HSG Toán 12 năm học 2017 - 2018 sở GD và ĐT Quảng Ninh (Bảng A)
Đề thi HSG Toán 12 năm học 2017 – 2018 sở GD và ĐT Quảng Ninh (Bảng A) gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi học sinh giỏi Toán 12 có lời giải chi tiết .
Đề thi chọn học sinh giỏi Toán 12 năm học 2017 - 2018 sở GD và ĐT Nam Định
Đề thi chọn học sinh giỏi Toán 12 năm học 2017 – 2018 sở GD và ĐT Nam Định gồm 2 phần: 40 câu hỏi trắc nghiệm khách quan, thời gian làm bài 60 phút, 5 bài toán tự luận, thời gian làm bài 75 phút, đề thi nhằm chọn lọc các em HSG môn Toán 12 THPT tại các trường THPT trên toàn tỉnh Nam Định. Trích dẫn đề thi chọn học sinh giỏi Toán 12 năm học 2017 – 2018 : + Trong không gian với hệ tọa độ Oxyz, cho A(a,0,0), B(0,b,0), C(0,0,c) với a, b, c là các số thực thay đổi, khác 0 và thỏa mãn a + b + c = 6. Gọi tâm mặt cầu ngoại tiếp tứ diện OABC là I. Giá trị nhỏ nhất của OI bằng? [ads] + Cho X là tập hợp các số tự nhiên có 4 chữ số khác nhau được lập từ các số 1, 2, 3, 4, 5, 6. Lấy ngẫu nhiên một số thuộc X. Xác suất để lấy được một số chia hết cho 45 là? +  Có bao nhiêu giá trị m nguyên dương nhỏ hơn 10 để đồ thị hàm số y = x^3 – mx + m – 1 có hai điểm cực trj nằm về 2 phía của trục Ox?

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6