Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phép chia các phân thức đại số

Nội dung Chuyên đề phép chia các phân thức đại số Bản PDF - Nội dung bài viết Chuyên đề phép chia các phân thức đại số Chuyên đề phép chia các phân thức đại số Tài liệu này bao gồm 13 trang, tập trung vào việc giải thích cách chia các phân thức đại số. Nó tóm tắt những kiến thức cốt lõi mà bạn cần phải đạt được, cung cấp hướng dẫn cụ thể về cách giải các dạng toán khác nhau, và chứa một loạt các bài tập từ cơ bản đến nâng cao trong chuyên đề này. Trên cơ sở lý thuyết, chúng ta sử dụng các quy tắc chia phân thức để thực hiện phép tính. Ví dụ, chia A/B cho C/D tương đương với nhân A/B với nghịch đảo của C/D, với điều kiện C/D khác không. Luôn lưu ý tính toán từ trái sang phải khi có nhiều phân thức trong phép chia. Bài tập cũng tập trung vào việc tìm phân thức thỏa mãn đẳng thức cho trước. Để giải bài toán này, ta cần đưa phân thức cần tìm về riêng một vế và sử dụng quy tắc nhân và chia phân thức để suy ra kết quả cuối cùng. Các bài toán nâng cao trong tài liệu cũng đề cập đến các trường hợp phức tạp hơn, thách thức hơn đối với học sinh. Tuy nhiên, bằng cách tự tin áp dụng kiến thức đã học, bạn sẽ có thể giải quyết chúng một cách mạch lạc. Với đáp án và lời giải chi tiết, tài liệu này không chỉ là một công cụ học tập hữu ích mà còn là người bạn đồng hành đáng tin cậy trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số.

Nguồn: sytu.vn

Đăng nhập để đọc

Chuyên đề định lí đảo và hệ quả của định lí Ta-lét
Tài liệu gồm 14 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề định lí đảo và hệ quả của định lí Ta-lét, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. KIẾN THỨC CẦN NHỚ 1. Định lí Ta-lét đảo: Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác. 2. Hệ quả của định lí Ta-lét: Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tỉ lệ với ba cạnh của tam giác đã cho. II. BÀI TẬP MINH HỌA A. CÁC DẠNG TOÁN CƠ BẢN DẠNG 1. Tính độ dài đoạn thẳng. Chia đoạn thẳng cho trước thành các phần bằng nhau. 1. Tính độ dài đoạn thẳng: + Xác định đường thẳng song song với một cạnh của tam giác. + Áp dụng hệ quả của định lí Ta-lét để lập tỉ lệ thức của các đoạn thẳng. + Thay số vào hệ thức rồi giải phương trình. 2. Chia đoạn thẳng cho trước thành các phần bằng nhau cách sử dụng hệ quả của định lí Ta-lét hoặc tính chất của đường thẳng song song cách đều. DẠNG 2. Chứng minh hệ thức hình học. + Xác định đường thẳng song song với một cạnh của tam giác. + Áp dụng hệ quả của định lí Ta-lét để lập tỉ lệ thức của các đoạn thẳng. + Sử dụng các tính chất của tỉ lệ thức hoặc cộng hay nhân theo vế các đẳng thức hình học. DẠNG 3. Chứng minh hai đường thẳng song song. + Sử dụng định lí Ta-lét, lập tỉ lệ thức giữa các đoạn thẳng. + Áp dụng định lí Ta-lét đảo, kết luận hai đường thẳng song song. DẠNG 4. Vẽ thêm đường thẳng song song để chứng minh hệ thức hình học, tính tỉ số hai đoạn thẳng. + Vẽ thêm đường thẳng song song. + Áp dụng hệ quả của định lí Ta-lét để lập tỉ lệ thức giữa các đoạn thẳng. + Biến đổi tỉ lệ thức. B. DẠNG BÀI NÂNG CAO TỔNG HỢP TALET VÀ LIÊN QUAN
Chuyên đề định lí Ta-lét trong tam giác
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề định lí Ta-lét trong tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. KIẾN THỨC CẦN NHỚ II. BÀI TẬP MINH HỌA A. CÁC DẠNG TOÁN CƠ BẢN DẠNG 1. Tính tỉ số hai đoạn thẳng. Chia đoạn thẳng theo tỉ số cho trước. 1. Sử dụng định nghĩa tỉ số của hai đoạn thẳng. 2. Một điểm C thuộc đoạn thẳng AB (hoặc đường thẳng AB), được gọi là chia đoạn thẳng AB theo tỉ số m/n khác 1 (m, n là các số dương), nếu ta có: CA/CB =m/n. 3. Sử dụng kĩ thuật đại số hóa hình học. 4. Lập tỉ lệ thức giữa các đoạn thẳng tỉ lệ rồi áp dụng tính chất của dãy tỉ số bằng nhau. DẠNG 2.Tính độ dài đoạn thẳng, dựng đoạn thẳng tỉ lệ thứ tư. 1. Tính độ dài đoạn thẳng: + Áp dụng định lí Ta-lét để lập hệ thức của các đoạn thẳng tỉ lệ. + Xác định đường thẳng song song với một cạnh của tam giác. + Thay số vào hệ thức rồi giải phương trình. 2. Trong bốn đoạn thẳng tỉ lệ, dựng đoạn thẳng thứ tự khi biết độ dài của ba đoạn kia: + Đặt ba đoạn thẳng trên hai cạnh của một góc. + Dựng đường thẳng song song để xác định đoạn thẳng thứ tư. DẠNG 3. Chứng minh các hệ thức hình học. 1. Xác định đường thẳng song song với một cạnh của tam giác. 2. Áp dụng định lí Ta-lét để lập hệ thức của các đoạn thẳng tỉ lệ. 3. Sử dụng các tính chất của tỉ lệ thức hoặc cộng theo vế các đẳng thức hình học. DẠNG 4. Vẽ thêm đường thẳng song song để tính tỉ số hai đoạn thẳng. 1. Vẽ thêm đường thẳng song song. 2. Sử dụng kĩ thuật đại số hóa hình học. 3. Áp dụng định lí Ta-lét. B. PHIẾU BÀI TỰ LUYỆN DẠNG BÀI CƠ BẢN
Chuyên đề diện tích đa giác
Tài liệu gồm 06 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích đa giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT Để tính diện tích đa giác, ta thường chia đa giác đó thành các tam giác, các tứ giác tính được diện tích rồi tính tổng các diện tích đó; hoặc tạo ra một đa giác nào đó có chứa đa giác ấy rồi tính hiệu các diện tích. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính diện tích đa giác. Phương pháp giải: Đưa về tính tổng các diện tích hoặc hiệu các diện tích. Dạng 2. Tính diện tích của đa giác bất kì. Phương pháp giải: Đưa về tính tổng các diện tích hoặc hiệu các diện tích. Dạng 3. Dựng tam giác có diện tích bằng diện tích một đa giác. Phương pháp giải: Thường kẻ đường thẳng song song với một đường thẳng cho trước để tạo ra một tam giác mới có diện tích bằng diện tích một tam giác cho trước. B. PHIẾU BÀI TỰ LUYỆN
Chuyên đề diện tích hình thoi
Tài liệu gồm 14 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích hình thoi, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. KIẾN THỨC CƠ BẢN + Diện tích tứ giác có hai đường chéo vuông góc bằng nửa tích hai đường chéo. + Diện tích hình thoi bằng nửa tích hai đường chéo hoặc bằng tích của một cạnh với chiều cao. II. MỘT SỐ DẠNG BÀI Dạng 1: Tính diện tích của tứ giác có hai đường chéo vuông góc. Dạng 2: Tính diện tích hình thoi. Dạng 3: Tìm diện tích lớn nhất (nhỏ nhất) của một hình. III. PHIẾU BÀI TỰ LUYỆN

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6