Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hệ phương trình ôn thi vào

Nội dung Chuyên đề hệ phương trình ôn thi vào Bản PDF - Nội dung bài viết Tài liệu ôn thi vào lớp 10 môn Toán chuyên đề hệ phương trình Tài liệu ôn thi vào lớp 10 môn Toán chuyên đề hệ phương trình Tài liệu bao gồm 108 trang, hướng dẫn phương pháp giải và chọn lọc các bài tập chuyên đề hệ phương trình, có đáp án và lời giải chi tiết. Được thiết kế để giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán. Các bài tập trong tài liệu được chọn lọc từ các nguồn đáng tin cậy để đảm bảo sự đa dạng và phong phú.

Nguồn: sytu.vn

Đăng nhập để đọc

Tuyển chọn các bài toán về bất đẳng thức và cực trị hình học
Tài liệu gồm 102 trang, tuyển chọn các bài toán về bất đẳng thức và cực trị hình học hay và khó, có đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình ôn tập thi vào lớp 10 môn Toán và ôn thi học sinh giỏi môn Toán bậc THCS. I. MỘT SỐ KIẾN THỨC CẦN NHỚ 1. Liên hệ giữa cạnh và góc trong tam giác. Định lí 1: Cho tam giác ABC. Nếu ABC ACB thì AC AB và ngược lại. Định lí 2: Cho hai tam giác ABC và MNP có AB MN và AC MP. Khi đó ta có bất đẳng thức BAC NMP BC NP. Định lí 3: Trong tam giác ABC ta có. Định lí 4: Với mọi tam giác ABC ta luôn có. Hệ quả: Cho n điểm A A A A 123 n. Khi đó ta luôn có. Dấu bằng xẩy ra n điểm A A A A 123 n thẳng hàng và sắp xếp theo thứ tự đó. Định lí 5: Cho tam giác ABC và M là trung điểm của BC. Khi đó ta có. 2. Quan hệ giữa đường xiên, đường vuông góc và hình chiếu của đường xiên. Định lí 1: Trong các đường xiên và đường vuông góc kẻ từ một điểm ở ngoài một đường thẳng đến đường thẳng đó thì đường vuông góc là đường ngắn nhất. Định lí 2: Trong hai đường xiên kẻ từ một điểm nằm ngoài một đường thẳng đến đường thẳng đó: Đường xiên nào có hình chiếu lớn hơn thì lớn hơn. Đường xiên nào lớn hơn thì có hình chiếu lớn hơn. Nếu hai đường xiên bằng nhau thì hai hình chiếu bằng nhau, và ngược lại, nếu hai hình chiếu bằng nhau thì hai đường xiên bằng nhau. 3. Các bất đẳng thức trong đường tròn. Định lí 1: Trong một đường tròn thì đường kính là dây lớn nhất. Định lí 2: Trong một đường tròn: Hai dây bằng nhau thì cách đều tâm và ngược lại. Dây nào lớn hơn thì dây đó gần tâm hơn và ngược lại. Định lí 3: Bán kính của hai đường tròn là R r, còn khoảng cách giữa tâm của chúng là d. Điều kiện cần và đủ để hai đường tròn đó cắt nhau là R r d R r. Định lí 4: Cho đường tròn (O; R) và một điểm M bất kì nằm trong đường tròn. Khi đó ta có R d N R d. Với N là điểm bất kì trên đường tròn và d là khoảng cách từ M tới tâm đường tròn. Định lí 5: Cho đường tròn (O; R) và một điểm M bất kì ngoài đường tròn. Khi đó ta có d R MN d R. Với N là điểm bất kì trên đường tròn và d là khoảng cách từ M tới tâm đường tròn. 4. Các bất đẳng thức về diện tích. Định lí 1: Với mọi tam giác ABC ta luôn có ABC 1 S AB AC 2, dấu bằng xẩy ra khi và chỉ khi tam giác ABC vuông tại A. Định lí 2 : Với mọi tứ giác ABC ta luôn có ABCD 1 S AC BD 2, dấu bằng xẩy ra khi và chỉ khi AC vuông góc với BD. Định lí 3: Với mọi tứ giác ABCD ta luôn có ABCD 1 S AB BC AD DC 2, dấu bằng xẩy ra khi và chỉ khi 0 B D 90. 5. Một số bất đẳng thức đại số thường dùng. Với x, y là các số thực dương, ta luôn có 2 2 2 2 2 x y 2xy 2 x y x y, dấu bằng xẩy ra khi và chỉ khi x y. Với x, y, z là các số thực dương, ta luôn có. Bất đẳng thức Cauchy: Với x, y, z là các số thực dương, ta luôn có. Bất đẳng thức Bunhiacopxki. Với a, b, c và x, y, z là các số thực, ta luôn có. II. CÁC VÍ DỤ MINH HỌA III. BÀI TẬP TỰ LUYỆN IV. HƯỚNG DẪN GIẢI
Bài toán về quỹ tích - tập hợp điểm
Tài liệu gồm 59 trang, tuyển chọn bài toán về quỹ tích – tập hợp điểm hay và khó, có đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình ôn tập thi vào lớp 10 môn Toán và ôn thi học sinh giỏi môn Toán bậc THCS. I. MỘT SỐ KIẾN THỨC CẦN NHỚ 1. Định nghĩa tập hợp điểm (quỹ tích). Một hình H được gọi là tập hợp điểm của những điểm M thoả mãn tính chất T khi nó chứa và chỉ chứa tính chất T. 2. Phương pháp chủ yếu giải bài toán tập hợp điểm. Để tìm tập hợp các điểm M thoả mãn tính chất T ta làm như sau: Bước 1: Tìm cách giải: – Xác định các yếu tố cố định và không đổi. – Xác định các điều kiện của điểm M. – Dự đoán tập hợp điểm. Bước 2: Trình bày lời giải: – Phần thuận: Chứng minh điểm M có tính chất T thuộc hình H. – Giới hạn: Căn cứ vào các vị trí đặc biệt của điểm M, chứng tỏ điểm M chỉ thuộc vào hình H, hoặc một phần B của hình H (nếu được). – Phần đảo: Chứng minh mọi điểm thuộc hình H (quỹ tích đã được giới hạn) có tính chất T. Thường làm như sau: + Lấy điểm M thuộc hình H (quỹ tích đã được giới hạn), giả sử tính chất T gồm n điều kiện. + Dựng một hình để chứng minh M có tính chất T sao cho M thoả mãn n − 1 điều kiện trong tính chất T và chứng minh M có thoả mãn điều kiện còn lại. – Kết luận:Tập hợp điểm M là hình H. Nêu rõ hình dạng và cách xác định hình H. Chú ý: – Việc tìm ra mối liên hệ giữa các yếu tố cố định, không đổi với yếu tố chuyển động là khâu chủ yếu giúp ta giải quyết bài toán tập hợp điểm. – Nếu bài toán chỉ hỏi “Điểm M chuyển động trên đường nào?” thì ta chỉ trình bày phần thuận, phàn giới hạn và phàn kết luận mà không cần không chứng minh phần đảo. – Giải bài toán tập hợp điểm thường là tìm cách đưa về tập hợp điểm cơ bản đã học. – Để khỏi vẽ hình lại khi chứng minh phần đảo tên các điểm trong phần đảo nên giữ nguyên như phần thuận. 3. Một số tập hợp điểm cơ bản. a) Tập hợp điểm là đường trung trực hoặc một phần đường trung trực. Định lí: Tập hợp các điểm M cách đều hai điểm phân biệt A, B cố định là đường trung trực d của đoạn thẳng AB. b) Tập hợp điểm là tia phân giác. Định lí: Tập hợp các điểm nằm trong góc xOy (khác góc bẹt) và cách đều hai cạnhcủa góc là tia phân giác của góc đó. Hệ quả: Tập hợp các điểm M cách đều hai đường thẳngcắt nhau xOx’ và yOy’ là bốn tia phân giác của bốn góc tạo thành, bốn tia này tạo thành hai đường thẳng vuông góc với nhau tại giao điểm O của hai đường thẳng đó. c) Tập hợp điểm là đường thẳng song song. Định lý 1: Tập hợp các điểm M cách đường thẳng h cho trước một khoảng bằng a không đổi là hai đường thẳng song song với đường thắng đã cho và cách đường thẳng đó bằng a. Định lí 2: Tập hợp các điểm cách đều hai đường thẳng song song cho trước là một đường thẳng song song và nằm cách đều hai đường thẳng đã cho. d) Tập hợp điểm là đường tròn, một phần của đường tròn, cung chứa góc. + Tập hợp các điểm M cách điểm O cho trước một khoảng không đổi r là đường tròn tâm O bán kính r. + Tập hợp các điểm nhìn đoạn thẳng cố định AB dưới góc 900 là đường tròn đường kính AB. + Tập hợp các điểm M tạo thành với hai mút của đoạn thẳng AB cho trước một góc AMB có số đo không đổi là α là hai cung tròn đối xứng nhau qua AB. II. CÁC VÍ DỤ MINH HỌA III. BÀI TẬP TỰ LUYỆN IV. HƯỚNG DẪN GIẢI
Các bài toán về tứ giác và đa giác đặc sắc
Tài liệu gồm 82 trang, tuyển chọn các bài toán về tứ giác và đa giác đặc sắc hay và khó, có đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình ôn tập thi vào lớp 10 môn Toán và ôn thi học sinh giỏi môn Toán bậc THCS. I. MỘT SỐ KIẾN THỨC VỀ TỨ GIÁC 1. Tứ giác. + Tứ giác ABCD là hình gồm bốn đoạn thẳng AB, BC, CD, DA, trong đó bất kì hai đoạn thẳng nào cũng không cùng nằm trên một đường thẳng. + Tứ giác lồi là tứ giác luôn nằm trong một nửa mặt phẳng có bờ là đường thẳng chứa bất kì cạnh nào của tam giác. + Tổng các góc của một tứ giác bằng 360 độ. + Góc kề bù với một góc của tứ giác gọi là góc ngoài của tứ giác. Tổng các góc ngoài của một tứ giác bằng 360 độ. 2. Hình thang. + Hình thang là tứ giác có hai cạnh đối song song. + Hình thang vuông là hình thang có một góc vuông. + Nếu một hình thang có hai cạnh bên song song thì hai cạnh bên bằng nhau, hai cạnh đáy bằng nhau. + Nếu một hình thang có hai cạnh đáy bằng nhau thì hai cạnh bên song song và bằng nhau. 3. Hình bình hành. + Hình bình hành là tứ giác có các cặp cạnh đối song song. Trong hình bình hành: + Các cạnh đối bằng nhau. + Các góc đối bằng nhau. + Hai đường chéo cắt nhau tại trung điểm của mỗi đường. 4. Hình chữ nhật. + Hình chữ nhật là tứ giác có bốn góc vuông. + Trong hình chữ nhật, hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường. 5. Hình thoi. + Hình thoi là một tứ giác có bốn cạnh bằng nhau. Trong hình thoi: + Hai đường chéo vuông góc với nhau. + Hai đường chéo là các đường phân giác của các góc của hình thoi. 6. Hình vuông. + Hình vuông là tứ giác có bốn góc vuông và có bốn cạnh bằng nhau. + Hình vuông có tất cả các tính chất của hình chữ nhật và hình thoi. 7. Đa giác. + Đa giác lồi là đa giác luôn nằm trong một nửa mặt phẳng có bờ là đường thẳng chứa bất kì cạnh nào của đa giác đó. + Đa giác đều là đa giác có tất cả các cạnh bằng nhau và tất cả các góc bằng nhau. + Tổng các góc của đa giác n cạnh bằng (n – 2).180. + Mỗi góc của đa giác đều n cạnh bằng (n – 2).180/n. + Số các đường chéo của đa giác n cạnh bằng n(n – 3)/2. II. CÁC VÍ DỤ MINH HỌA III. BÀI TẬP TỰ LUYỆN IV. HƯỚNG DẪN GIẢI
Các bài toán về tam giác đặc sắc
Tài liệu gồm 90 trang, tuyển chọn các bài toán về tam giác đặc sắc hay và khó, có đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình ôn tập thi vào lớp 10 môn Toán và ôn thi học sinh giỏi môn Toán bậc THCS. I. HỆ THỐNG KIẾN THỨC CƠ BẢN VỀ TAM GIÁC 1. Tổng ba góc trong một tam giác. 2. Hai tam giác bằng nhau. a. Hai tam giác bằng nhau. b. Các trường hợp bằng nhau của hai tam giác. c. Các trường hợp bằng nhau của tam giác vuông. 3. Quan hệ giữa các yếu tố trong tam giác. a. Quan hệ giữa góc và cạnh đối diện trong một tam giác. b. Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu. c. Quan hệ giữa ba cạnh của một tam giác, bất đẳng thức tam giác. 4. Các đường đồng quy trong tam giác. a. Ba đường trung tuyến của tam giác. b. Ba đường phân giác của tam giác. c. Ba đường trung trực của tam giác. d. Ba đường cao của tam giác. 5. Tam giác đồng dạng. a. Định lí Talets trong tam giác. b. Tính chất đường phân giác trong tam giác. c. Tam giác đồng dạng. 6. Hệ thức lượng trong tam giác. a. Hệ thức liên hệ giữa cạnh, đường cao và hình chiếu trong tam giác vuông. b. Tỉ số lượng giác của góc nhọn. c. Tỉ số lượng giác của hai góc phụ nhau. d. Một số hệ thức lượng giác. e. Liên hệ giữa cạnh và góc trong tam giác vuông. II. MỘT SỐ KIẾN THỨC NÂNG CAO THƯỜNG ÁP DỤNG 1. Các công thức về đường cao, đường trung tuyến, đường phân giác trong tam giác. 2. Các công thức về lượng giác trong tam giác. 3. Các định lí hình học nổi tiếng trong tam giác. III. CÁC THÍ DỤ MINH HỌA IV. BÀI TẬP TỰ LUYỆN V. HƯỚNG DẪN GIẢI

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6