Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử học sinh giỏi môn Toán lớp 9 năm 2020 chi tiết - Đề 5

Nguồn: onluyen.vn

Đăng nhập để đọc

Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Yên Phong Bắc Ninh
Nội dung Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Yên Phong Bắc Ninh Bản PDF - Nội dung bài viết Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022-2023 Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022-2023 Chào đón đến với Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022-2023 do Phòng Giáo dục và Đào tạo Yên Phong, Bắc Ninh tổ chức. Đề thi này sẽ diễn ra vào ngày 14 tháng 01 năm 2023, dành cho các học sinh lớp 9. Trích dẫn Đề học sinh giỏi huyện Toán lớp 9 năm 2022-2023: Tìm tất cả các số nguyên dương a, b sao cho a + b^2 chia hết cho a^2b - 1. Cho các đường thẳng: (d1): 2x + y = 6; (d2): 3x + y = 10; (d3): (2m + 1)x + 2y = m + 7. Tìm các giá trị của m để các đường thẳng trên đồng quy tại một điểm. Cho đường tròn (O; R) và một điểm A nằm bên ngoài đường tròn. Từ A vẽ hai tiếp tuyến AB, AC của (O; R). Từ B vẽ đường kính BD của (O; R), đường thẳng AD cắt (O; R) tại các điểm E (khác điểm D), gọi H là giao điểm của OA và BC. Chứng minh AE.AD = AH.AO. Qua O vẽ đường thẳng vuông góc với AD tại K cắt BC tại F. Chứng minh rằng FD là tiếp tuyến của (O; R). Đường thẳng đi qua trung điểm I của đoạn thẳng AB vuông góc với cạnh OA tại M cắt đường thẳng DF tại N. Tam giác AND là tam giác gì? Vì sao? Trên bảng có các số tự nhiên từ 1 đến 2022, người ta làm như sau: Lấy ra hai số bất kì và thay bằng hiệu của chúng, cứ làm như vậy đến khi còn một số trên bảng thì dừng lại. Có thể làm để trên bảng chỉ còn lại số 2 được không? Giải thích? Hy vọng rằng các em học sinh sẽ học tập và ôn tập chăm chỉ để đạt kết quả cao trong kỳ thi sắp tới. Chúc quý thầy cô và các em thành công!
Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Hương Trà TT Huế
Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Hương Trà TT Huế Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 9 năm 2022 - 2023 phòng GD&ĐT Hương Trà - TT Huế Đề học sinh giỏi Toán lớp 9 năm 2022 - 2023 phòng GD&ĐT Hương Trà - TT Huế Sytu xin chào quý thầy, cô giáo và các em học sinh lớp 9. Đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2022 - 2023 do Phòng Giáo dục và Đào tạo huyện Hương Trà, tỉnh Thừa Thiên Huế tổ chức. Đề thi bao gồm 01 trang với 05 bài toán hình thức 100% tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi: + Cho phương trình: x² - 2mx + m² - m - 6 = 0 (m là tham số). Với giá trị nào của m thì phương trình có hai nghiệm x1 và x2 sao cho |x1| + |x2| = 8. + Tìm tất cả các cặp số nguyên dương (x;y) thỏa mãn (x + y)³ = (x - y - 6)². + Cho tam giác ABC vuông tại A có phân giác AD. Gọi M, N lần lượt là hình chiếu của B, C lên đường thẳng AD. Chứng minh rằng: 2AD < BM + CN. + Cho nửa đường tròn tâm O đường kính AB. Một điểm C cố định thuộc đoạn thẳng AO (C khác A và C khác O). Đường thẳng đi qua C và vuông góc với AO cắt nửa đường tròn tại D. Trên cung BD lấy điểm M (M khác B và M khác D). Tiếp tuyến của nửa đường tròn tại M cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD. a) Chứng minh tam giác EMF là tam giác cân. b) Gọi I là tâm đường tròn ngoại tiếp tam giác FDM. Chứng minh ba điểm D, I, B thẳng hàng. c) Chứng minh góc ABI có số đo không đổi khi M di chuyển trên cung BD.
Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Quế Võ Bắc Ninh
Nội dung Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Quế Võ Bắc Ninh Bản PDF - Nội dung bài viết Giới thiệu đề thi học sinh giỏi môn Toán lớp 9 năm 2022-2023 Giới thiệu đề thi học sinh giỏi môn Toán lớp 9 năm 2022-2023 Chào đón quý thầy cô và các em học sinh lớp 9, đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2022-2023 sẽ diễn ra vào ngày 11 tháng 01 năm 2023 tại phòng Giáo dục và Đào tạo huyện Quế Võ, tỉnh Bắc Ninh. Đây là cơ hội để các em thể hiện kiến thức, sự sáng tạo và năng khiếu trong môn Toán. Bài thi sẽ đa dạng với nhiều dạng bài khác nhau, từ những bài toán giải tích đến các bài toán hình học phức tạp. Một số ví dụ bài toán trong đề thi bao gồm: Tìm các số tự nhiên x, y sao cho x^2 + 3x + 1 = 5y. Có bao nhiêu cách viết các số tự nhiên từ 1 đến 15 thành một dãy sao cho tổng của hai số liên tiếp bất kỳ trong dãy đều là số chính phương. Chứng minh rằng AE là tiếp tuyến của đường tròn (O') khi hai đường tròn (O) và (O') cắt nhau tại hai điểm phân biệt A và B cố định. Chứng minh rằng đường tròn ngoại tiếp tam giác AEF luôn đi qua một điểm cố định khác A khi hai đường tròn (O) và (O') thay đổi nhưng luôn đi qua A, B. Chứng minh rằng TP = TQ khi trên đường tròn (O) lấy điểm P bất kỳ sao cho PA cắt (O') tại Q. Hãy cùng tham gia và thách thức bản thân với những bài toán thú vị trong đề thi học sinh giỏi môn Toán lớp 9. Chúc các em thành công!
Đề chọn học sinh giỏi lớp 9 môn Toán THCS năm 2022 2023 sở GD ĐT Vĩnh Phúc
Nội dung Đề chọn học sinh giỏi lớp 9 môn Toán THCS năm 2022 2023 sở GD ĐT Vĩnh Phúc Bản PDF - Nội dung bài viết Chào mừng quý thầy cô và các em học sinh lớp 9! Chào mừng quý thầy cô và các em học sinh lớp 9! Đề thi chọn học sinh giỏi môn Toán lớp 9 THCS cấp tỉnh năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc đã được công bố. Kỳ thi sẽ diễn ra vào ngày 11 tháng 01 năm 2023. Dưới đây là một số câu hỏi khó trong đề thi: 1. Cho tam giác ABC có hai đường trung tuyến BM, CN cắt nhau tại điểm G. Gọi K là một điểm trên cạnh BC, đường thẳng (d1) đi qua K và song song với CN cắt AB tại D, đường thẳng (d2) đi qua K và song song với BM cắt AC tại E. Gọi I là giao điểm của hai đường thẳng KG và DE. Hãy chứng minh rằng I là trung điểm của đoạn thẳng DE. 2. Cho hình thang ABCD có đáy nhỏ là AB và BC = BD. Gọi H là trung điểm của đoạn thẳng CD. Đường thẳng (d) đi qua điểm H cắt các đường thẳng AC, AD lần lượt tại E, F sao cho D nằm giữa A và F. Hãy chứng minh rằng tứ giác DBF và EBC là đồng dạng. 3. Một cửa hàng bán bưởi ở Đoan Hùng bán mỗi quả với giá 50000 đồng và bán được 40 quả mỗi ngày. Nếu giảm giá mỗi quả 1000 đồng, thì số quả bán được mỗi ngày tăng lên 10 quả. Hãy xác định giá bán để cửa hàng thu được lợi nhuận cao nhất, biết rằng giá nhập mỗi quả ban đầu là 30000 đồng. Chúc các em học sinh lớp 9 Vĩnh Phúc ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6