Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử TN THPT 2023 môn Toán đợt 3 trường Nguyễn Tất Thành - Hà Nội

giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi khảo sát tốt nghiệp THPT năm học 2022 – 2023 môn Toán đợt 3 trường THCS & THPT Nguyễn Tất Thành, Đại học Sư phạm Hà Nội, thành phố Hà Nội; đề thi có đáp án trắc nghiệm mã đề 301 – 302 – 303 – 304. Trích dẫn Đề thi thử TN THPT 2023 môn Toán đợt 3 trường Nguyễn Tất Thành – Hà Nội : + Cho hình nón (N) có đỉnh S và có độ dài đường sinh bằng a. Mặt phẳng (P) đi qua đỉnh S và cắt hình nón (N) theo thiết diện là tam giác SAB (hai điểm A, B thuộc đường tròn đáy của hình nón) thỏa mãn AS B d 120o. Biết mặt phẳng (SAB)tạo với mặt phẳng chứa đáy hình nón một góc 60o. Thể tích khối nón (N) là? + Trong không gian tọa độ Oxyz, cho hai mặt phẳng (P) : 2x + 2y − z − 7 = 0, (Q) : 2x + 2y − z + 11 = 0. Biết rằng tập hợp tâm các mặt cầu mà tiếp xúc đồng thời với hai mặt phẳng (P), (Q) là mặt phẳng (R). Khoảng cách từ điểm A(1; 3; −5) đến (R) bằng? + Một hộp chứa 14 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 6 quả màu xanh được đánh số từ 1 đến 8. Lấy ngẫu nhiên hai quả cầu từ hộp đó, xác suất để lấy được hai quả cầu khác màu và đồng thời khác số là?

Nguồn: toanmath.com

Đăng nhập để đọc

Đề thi thử TN THPT năm 2022 môn Toán lần 1 trường THPT Nho Quan A - Ninh Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử TN THPT năm 2022 môn Toán lần 1 trường THPT Nho Quan A – Ninh Bình, đề thi có đáp án. Trích dẫn đề thi thử TN THPT năm 2022 môn Toán lần 1 trường THPT Nho Quan A – Ninh Bình : + Thầy Đông gửi 100 triệu đồng vào ngân hàng theo thể thức lãi kép kì hạn 1 năm với lãi suất là 12% một năm. Sau n năm thầy Đông rút toàn bộ số tiền (cả vốn lẫn lãi). Tìm số nguyên dương n nhỏ nhất để số tiền lãi nhận được lớn hơn 40 triệu đồng (giả sử lãi suất hàng năm không thay đổi). + Cho hình nón có chiều cao bằng 2 và bán kính đáy bằng 4. Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện bằng 3. Diện tích của thiết diện bằng? + Cho hai mặt cầu S1 và S2 đồng tâm I có bán kính lần lượt là 1 R 2 và 2 R 10. Xét tứ diện ABCD có hai đỉnh A, B nằm trên S1 và hai đỉnh C, D nằm trên S2. Thể tích lớn nhất của khối tứ diện ABCD bằng? + Cho hàm số y f x có đạo hàm và liên tục trên và có đồ thị y f x như hình bên. Có bao nhiêu giá trị nguyên dương của m để hàm số y f x m 4 2 2020 có 3 điểm cực tiểu? + Cho hàm số f x có đạo hàm 2 3 f x x x x 1 1 2. Hàm số f x đồng biến trên những khoảng nào trong những khoảng dưới đây?
Đề thi thử tốt nghiệp THPT năm 2022 môn Toán liên trường THPT - Hà Tĩnh
Chiều thứ Bảy ngày 22 tháng 01 năm 2022, một số trường THPT trực thuộc sở Giáo dục và Đào tạo tỉnh Hà Tĩnh: THPT Cù Huy Cận, THPT Vũ Quang, THPT Đức Thọ … liên kết tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2021 – 2022. Đề thi thử tốt nghiệp THPT năm 2022 môn Toán liên trường THPT – Hà Tĩnh mã đề 001 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian phát đề), đề thi có đáp án và lời giải chi tiết các mã đề 001 – 002 – 003 – 004. Trích dẫn đề thi thử tốt nghiệp THPT năm 2022 môn Toán liên trường THPT – Hà Tĩnh : + Trong không gian với hệ trục tọa độ Oxyz cho A a B b C c với abc 0 sao cho 2 2 2 5 36 OA OB OC OB OC. Tính a b c khi thể tích khối chóp O ABC đạt giá trị lớn nhất? + Cho hình chóp tứ giác S ABCD có đáy là hình vuông; mặt bên SAB là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với đáy. Biết khoảng cách giữa hai đường thẳng AB và SD bằng 3 5 5 a. Tính thể tích V của khối chóp S ABCD. + Cho hàm số 4 3 2 f x x x x m x 14 36 16 với m là tham số thực. Có bao nhiêu giá trị nguyên của m để hàm số g x f x có 7 điểm cực trị? + Cho hàm số y f x có bảng biến thiên như sau: Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là? + Một hộp đựng 11 tấm thẻ được đánh số từ 1 đến 11. Chọn ngẫu nhiên 3 tấm thẻ. Xác suất để tổng số ghi trên 3 tấm thẻ ấy là một số lẻ bằng?
Đề thi thử Toán TN THPT 2022 lần 1 trường chuyên Hoàng Văn Thụ - Hòa Bình
Đề thi thử Toán TN THPT 2022 lần 1 trường chuyên Hoàng Văn Thụ – Hòa Bình mã đề 101 gồm 07 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề), kỳ thi nhằm đánh giá chất lượng và giúp các em học sinh lớp 12 rèn luyện để hướng đến kỳ thi tốt nghiệp Trung học Phổ thông năm học 2021 – 2022 do Bộ Giáo dục và Đào tạo tổ chức. Trích dẫn đề thi thử Toán TN THPT 2022 lần 1 trường chuyên Hoàng Văn Thụ – Hòa Bình : + Trong không gian Ox yz cho điểm A(2;1;-3) và hai mặt phẳng 3 0 Q x y z 2 0 R x y z. Mặt phẳng P đi qua A đồng thời vuông góc với hai mặt phẳng Q R có phương trình là? + Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ t là 2 3 f t t t 45. Nếu xem f t là tốc độ truyền bệnh (người/ngày) tại thời điểm t. Tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ bao nhiêu? + Trong không gian Oxyz cho hai điểm A(4;6;2), B(2;-2;0) và mặt phẳng P x y z 0. Xét đường thẳng d thay đổi thuộc P và đi qua B, gọi H là hình chiếu vuông góc của A trên d. Biết rằng khi d thay đổi thì H thuộc một đường tròn cố định. Diện tích của hình tròn đó bằng? + Cho hàm số y f x liên tục trên và thỏa mãn f 4 4. Đồ thị hàm số y f x như hình vẽ bên dưới. Để giá trị lớn nhất của hàm số 2 3 2 x h x f x x m trên đoạn (-4;3) không vượt quá 2022 thì tập giá trị của m là? + Có tất cả bao nhiêu giá trị nguyên của y sao cho tương ứng với mỗi y luôn tồn tại không quá 15 số nguyên x thỏa mãn điều kiện?
Đề thi thử Toán THPT QG 2022 lần 1 trường THPT Lương Thế Vinh - Hà Nội
Đề thi thử Toán THPT QG 2022 lần 1 trường THPT Lương Thế Vinh – Hà Nội mã đề 101 được biên soạn theo hình thức đề thi 100% trắc nghiệm, đề gồm 06 trang với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề thi thử Toán THPT QG 2022 lần 1 trường THPT Lương Thế Vinh – Hà Nội : + Một téc nước hình trụ, đang chứa nước được đặt nằm ngang, có chiều dài 3 m và đường kính đáy 1 m. Hiện tại mặt nước trong téc cách phía trên đỉnh của téc 0,25 m (xem hình vẽ). Tính thể tích của nước trong téc (kết quả làm tròn đến hàng phần nghìn). + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, SA vuông góc với đáy, I là tâm mặt cầu ngoại tiếp hình chóp. Khẳng định nào sau đây là đúng? A. I là trung điểm SA. B. I là giao điểm của AC và BD. C. I là tâm đường tròn ngoại tiếp tam giác SBD. D. I là trung điểm SC. + Tại thời điểm ban đầu nếu đầu tư P đô-la với tỷ lệ lãi suất được tính gộp liên tục hàng năm không đổi là r thì giá trị tương lai của khoản đầu tư này sau t năm là B(t) = P · e rt đô-la. Giả sử tỷ lệ lãi suất tính gộp hàng năm là 8%. Hỏi sau bao nhiêu năm thì số tiền đầu tư ban đầu tăng thêm ít nhất 50%? + Cho hàm số f(x) có đạo hàm trên R và f0(x) có bảng biến thiên như hình vẽ. Đồ thị y = f0(x) cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là −3;2. Có bao nhiêu giá trị nguyên của tham số m thuộc [−10; 10] để hàm số y = f (x2 + 2x − m) đồng biến trên (−1; 1). + Cho hàm số y = f(x) có đồ thị như hình vẽ bên dưới. Gọi S là tập hợp tất cả các giá trị của tham số m để phương trình f3 − √4 − x2 = m có hai nghiệm phân biệt thuộc đoạn −√3; √3. Tìm số phần tử của tập S.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6