Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Olympic lớp 10 môn Toán năm 2019 cụm trường THPT Hà Đông Hoài Đức Hà Nội

Nội dung Đề Olympic lớp 10 môn Toán năm 2019 cụm trường THPT Hà Đông Hoài Đức Hà Nội Bản PDF - Nội dung bài viết Đề Olympic Toán lớp 10 cụm trường THPT Hà Đông - Hoài Đức - Hà Nội Đề Olympic Toán lớp 10 cụm trường THPT Hà Đông - Hoài Đức - Hà Nội Sytu xin giới thiệu đến các bạn đề thi Olympic Toán lớp 10 năm học 2018 - 2019 của cụm trường THPT Hà Đông - Hoài Đức - Hà Nội. Đề thi gồm 01 trang với 04 bài toán dạng tự luận, thang điểm bài thi là 20 điểm, học sinh có 150 phút để làm bài. Trích đề Olympic Toán lớp 10 năm 2019 cụm trường THPT Hà Đông - Hoài Đức - Hà Nội: Cho tam giác ABC có BC = a, CA = b, AB = c, độ dài ba đường cao kẻ từ đỉnh A, B, C lần lượt là ha, hb, hc. Biết rằng asinA + bsinB + csinC = ha + hb + hc, chứng minh tam giác ABC đều. Cho hai tia Ax, By với AB = 100 (cm), góc xAB = 45° và By ⊥ AB. Chất điểm X chuyển động trên tia Ax bắt đầu từ A với vận tốc 3√2 (cm/s), cùng lúc đó chất điểm Y chuyển động trên tia By bắt đầu từ B với vận tốc 4 (cm/s). Tìm giá trị nhỏ nhất của đoạn MN. Cho phương trình x^4 - 2(m + 2)x^2 + 2m + 3 = 0 (m là tham số). Tìm tất cả các giá trị của tham số m để phương trình có 4 nghiệm phân biệt x1, x2, x3, x4 thỏa mãn x1^2 + x2^2 + x3^2 + x4^2 + = 52. Đề thi Olympic Toán lớp 10 năm 2019 cụm trường THPT Hà Đông - Hoài Đức - Hà Nội là cơ hội để học sinh thử sức và cải thiện kỹ năng giải các bài toán Toán khó, phần thưởng không chỉ là điểm số mà còn là sự tự tin và kiến thức mới mẻ. Chúc các bạn thành công!

Nguồn: sytu.vn

Đăng nhập để đọc

Đề thi HSG tỉnh lớp 10 môn Toán THPT năm 2018 2019 sở GD ĐT Hải Dương
Nội dung Đề thi HSG tỉnh lớp 10 môn Toán THPT năm 2018 2019 sở GD ĐT Hải Dương Bản PDF - Nội dung bài viết Đề thi HSG tỉnh Toán lớp 10 THPT năm 2018 – 2019 sở GD&ĐT Hải Dương Đề thi HSG tỉnh Toán lớp 10 THPT năm 2018 – 2019 sở GD&ĐT Hải Dương Thứ Tư ngày 03 tháng 04 năm 2019, sở Giáo dục và Đào tạo tỉnh Hải Dương đã tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 10 khối THPT năm học 2018 – 2019. Mục tiêu của kỳ thi là tuyển chọn những em học sinh xuất sắc từ các trường THPT tại Hải Dương để khen thưởng và tạo ra đội tuyển học sinh giỏi môn Toán lớp 10 cấp tỉnh. Đề thi HSG tỉnh Toán lớp 10 THPT năm 2018 – 2019 sở GD&ĐT Hải Dương được biên soạn theo hình thức tự luận với 05 bài toán. Thời gian làm bài thi là 180 phút, đề thi cung cấp lời giải chi tiết và thang điểm. Trích dẫn một số câu hỏi từ đề thi: Một xưởng sản xuất hai loại sản phẩm loại I và loại II từ 200kg nguyên liệu và một máy chuyên dụng. Cần sản xuất bao nhiêu kilôgam sản phẩm mỗi loại để tiền lãi lớn nhất? Cho tam giác nhọn ABC, chứng minh rằng (sinA)^2 + (sinB)^2 + (sinC)^2 = 9/4 khi biết rằng S_ΔABC = 4.S_ΔHEK với H, E, K lần lượt là chân đường cao từ các đỉnh A, B, C. Tính tọa độ các đỉnh A, B, C của tam giác ABC cân tại A khi biết AB: x + y – 3 = 0, AC: x – 7y + 5 = 0 và điểm M(1;1;0) thuộc cạnh BC. Đề thi được thiết kế để kiểm tra khả năng thực hành và hiểu biết sâu sắc của học sinh về các vấn đề Toán học. Hy vọng rằng các em học sinh sẽ tự tin và thành công trong kỳ thi này.
Đề thi học sinh giỏi lớp 10 môn Toán năm học 2018 2019 sở GD ĐT Hà Tĩnh
Nội dung Đề thi học sinh giỏi lớp 10 môn Toán năm học 2018 2019 sở GD ĐT Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 10 năm học 2018 – 2019 sở GD&ĐT Hà Tĩnh Đề thi học sinh giỏi Toán lớp 10 năm học 2018 – 2019 sở GD&ĐT Hà Tĩnh Ngày 21 tháng 03 năm 2019, sở Giáo dục và Đào tạo Hà Tĩnh đã tổ chức kỳ thi chọn học sinh giỏi Toán lớp 10 năm học 2018 – 2019. Đề thi được biên soạn theo hình thức tự luận với 05 bài toán, thời gian làm bài thi là 180 phút. Kỳ thi nhằm tuyển chọn các em học sinh lớp 10 giỏi môn Toán tại các trường THPT tại tỉnh Hà Tĩnh để thành lập đội tuyển học sinh giỏi Toán lớp 10 cấp tỉnh, tham dự kỳ thi học sinh giỏi Toán lớp 10 cấp Quốc gia. Trích dẫn đề thi học sinh giỏi Toán lớp 10 năm học 2018 – 2019 sở GD&ĐT Hà Tĩnh: + Một người nông dân có một khu đất rất rộng dọc theo một con sông. Người đó muốn làm một cái hàng rào hình chữ E để được một khu đất gồm hai phần đất hình chữ nhật để trồng rau và nuôi gà. Chi phí nguyên vật liệu cho hàng rào song song với bờ sông là 80 ngàn đồng/mét và cho phần còn lại là 40 ngàn đồng/mét. Tính diện tích lớn nhất của phần đất mà người nông dân rào được với chi phí nguyên vật liệu là 20 triệu đồng. + Cho tam giác ABC có chu vi bằng 20, góc BAC bằng 60 độ, bán kính đường tròn nội tiếp tam giác bằng 3. Gọi A1, B1, C1 lần lượt là hình chiếu vuông góc của A, B, C lên BC, AC, AB và M là điểm nằm trong tam giác ABC sao cho góc ABM = BCM = CAM = φ. Tính cotφ và bán kính đường tròn ngoại tiếp tam giác A1B1C1. + Cho phương trình (x^2 + ax + 1)^2 + a(x^2 + ax + 1) + 1 = 0, với a là tham số. Biết rằng phương trình có nghiệm thực duy nhất. Chứng minh rằng a > 2.
Đề thi học sinh giỏi lớp 10 môn Toán THPT năm 2018 2019 sở GD ĐT Hà Nam
Nội dung Đề thi học sinh giỏi lớp 10 môn Toán THPT năm 2018 2019 sở GD ĐT Hà Nam Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 10 THPT năm 2018 – 2019 sở GD&ĐT Hà Nam Đề thi học sinh giỏi Toán lớp 10 THPT năm 2018 – 2019 sở GD&ĐT Hà Nam Vừa qua, sở Giáo dục và Đào tạo Hà Nam đã tổ chức kỳ thi chọn học sinh giỏi khối THPT năm học 2018 – 2019 môn Toán dành cho học sinh lớp 10. Đề thi học sinh giỏi Toán lớp 10 THPT năm 2018 – 2019 sở GD&ĐT Hà Nam được biên soạn theo hình thức tự luận với 05 bài toán, thời gian làm bài 180 phút. Trích dẫn đề thi học sinh giỏi Toán lớp 10 THPT năm 2018 – 2019 sở GD&ĐT Hà Nam: + Bài 1: Trong mặt phẳng Oxy cho parabol (P): y = x^2 + mx + 3m – 2, đường thẳng (d): x – y + m = 0 (m là tham số thực) và hai điểm A(-1;-1), B(2;2). Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt M, N sao cho A, B, M, N là bốn đỉnh của hình bình hành. + Bài 2: Cho tứ giác lồi ABCD có AC vuông góc với BD và nội tiếp đường tròn tâm O bán kính R = 1. Đặt diện tích tứ giác ABCD bằng S và AB = a, BC = b, CD = c, DA = d. Tính giá trị biểu thức T = (ab + cd )(ad + bc)/S. + Bài 3: Trong mặt phẳng Oxy, cho tam giác ABC cân tại A(-1;3). Gọi D là điểm trên cạnh AB sao cho AB = 3AD và H là hình chiếu vuông góc của B trên CD. Điểm M(1/2;-3/2) là trung điểm đoạn HC. Xác định tọa độ đỉnh C, biết đỉnh B nằm trên đường thẳng có phương trình x + y + 7 = 0. Đề thi học sinh giỏi Toán lớp 10 THPT năm 2018 – 2019 sở GD&ĐT Hà Nam là bài kiểm tra khó và đòi hỏi sự tư duy logic, khả năng phân tích và giải quyết vấn đề của học sinh. Chắc chắn đây là một bài thi thách thức nhưng cũng rất hấp dẫn đối với những ai yêu thích môn Toán.
Đề thi Olympic lớp 10 môn Toán năm 2018 2019 trường THPT Kim Liên Hà Nội
Nội dung Đề thi Olympic lớp 10 môn Toán năm 2018 2019 trường THPT Kim Liên Hà Nội Bản PDF - Nội dung bài viết Đề thi Olympic Toán lớp 10 năm 2018 - 2019 trường THPT Kim Liên Hà Nội Đề thi Olympic Toán lớp 10 năm 2018 - 2019 trường THPT Kim Liên Hà Nội Sytu xin gửi đến thầy, cô và các em học sinh khối 10 nội dung đề thi Olympic Toán lớp 10 năm 2018 - 2019 trường THPT Kim Liên - Hà Nội. Đề thi bao gồm 01 trang với 05 bài toán tự luận, học sinh có thời gian làm bài trong 150 phút (không tính thời gian giám thị coi thi phát đề). Đề thi được kèm theo lời giải chi tiết. Trích đề thi Olympic Toán lớp 10 năm 2018 - 2019 trường THPT Kim Liên - Hà Nội: 1. Một cầu treo có dây truyền đỡ theo dạng Parabol ACB. Đầu và cuối của dây được gắn vào các điểm A, B trên mỗi trục AA′ và BB′ với độ cao 30 m. Chiều dài đoạn A'B' trên nền cầu bằng 200 m. Độ cao ngắn nhất của dây truyền trên cầu là CC' = 5 m. Tính tổng độ dài của các dây cáp treo. 2. Cho tam giác ABC và một điểm M bất kỳ, với BC = a, CA = b, AB = c. a) Chứng minh rằng (b^2 - c^2)cosA = a(c.cosC - b.cosB). b) Tìm tập hợp các điểm M sao cho MB^2 + MC^2 = MA^2. 3. Trong mặt phẳng với hệ tọa độ Oxy, cho A(3;1), B(-1;2). a) Tìm tọa độ điểm N trên trục hoành Ox sao cho khoảng cách AN nhỏ nhất. b) Cho điểm M di động trên đường thẳng d: y = x. Đường thẳng MA cắt trục hoành tại P và đường thẳng MB cắt trục tung tại Q. Chứng minh đường thẳng PQ luôn đi qua một điểm cố định.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6