Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn học sinh giỏi Toán năm 2020 - 2021 trường THPT chuyên Bến Tre

Đề chọn học sinh giỏi Toán năm 2020 – 2021 trường THPT chuyên Bến Tre gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút. Trích dẫn đề chọn học sinh thi HSG Toán cấp tỉnh năm 2020 – 2021 trường THPT chuyên Bến Tre : + Vé xe buýt có dạng abcdef với a, b, c, d, e, f thuộc {0; 1; 2; …; 9}. Một vé như trên thỏa mãn điều kiện a + b + c = d + e + f được gọi là vé hạnh phúc. Tính số vé hạnh phúc. + Cho hai đường tròn (O1) và (O2) cắt nhau tại A và B. Các tiếp tuyến của (O1) tại A, B cắt nhau tại O. Gọi I là điểm trên đường tròn (O1) nhưng ngoài đường tròn (O2). Các đường thẳng IA, IB cắt đường tròn (O2) lần lượt tại C, D. Gọi M là trung điểm của đoạn thẳng CD. Chứng minh rằng: a) Các tam giác IAB và IDC đồng dạng với nhau. b) I, M, O thẳng hàng. + Cho hàm f: R → R thỏa mãn điều kiện: f(f(x) + 2f(y)) = f(x) + y + f(y) với mọi x, y thuộc R (1). a) Chứng minh f là đơn ánh. b) Tìm tất cả các hàm số thỏa mãn (1).

Nguồn: toanmath.com

Đăng nhập để đọc

Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Hải Dương
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Hải Dương Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào thứ Tư ngày 21 tháng 09 năm 2022. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Hải Dương : + Cho tam giác nhọn không cân ABC nội tiếp đường tròn (O) và ngoại tiếp đường tròn (I). Gọi D là hình chiếu của I trên BC, AD cắt lại (O) tại G. Lấy E và F lần lượt là điểm chính giữa của cung nhỏ BC và cung lớn BC. Hai đường thẳng ID và FG cắt nhau tại điểm H. Gọi M là trung điểm cạnh BC. a) Chứng minh rằng điểm H nằm trên đường tròn ngoại tiếp tam giác IBC. b) Gọi P là điểm trên đường thẳng ID sao cho MP = MB và K trên đường thẳng BC sao cho KP vuông góc PM, KI cắt FG tại N và MN cắt AI tại J. Chứng minh E là trung điểm của IJ. + Tìm tất cả các bộ số nguyên dương (a; b; c) thỏa mãn: a^b + 1 | (a + 1)^c. + Bạn A có một số chiếc thẻ thuộc ba loại thẻ: thẻ hai mặt đỏ; thẻ một mặt vàng, một mặt đỏ; thẻ hai mặt vàng. Bạn ấy không phân biệt được màu sắc nên cần một máy scan để quét. Tuy nhiên máy này cũng chỉ có thể phân biệt được tất cả các mặt thẻ úp xuống đưa vào trong máy có đều là màu vàng hay không. Nghĩa là nếu tất cả các mặt úp đều vàng nó sẽ báo vàng, còn chỉ cần có một mặt đỏ trong số đó thì nó báo không vàng. Mỗi lần bạn ấy có thể chọn bao nhiêu thẻ để đưa vào cũng được. a) Chứng minh rằng nếu A có n thẻ gồm một thẻ hai mặt đỏ và n – 1 thẻ hai mặt vàng thì A có thể sử dụng máy để tìm ra thẻ hai mặt đỏ sau nhiều nhất là [log2n] bước. b) Xét dãy số Fibonacci (F) với F1 = 1, F2 = 1, Fn+2 = Fn+1 + Fn với n >= 1. Với n >= 4, giả sử bạn A có Fn thẻ gồm một thẻ hai mặt đỏ và một thẻ một mặt vàng, một mặt đỏ, còn lại là các thẻ hai mặt vàng. Hỏi bạn ấy có thuật toán nào để có thể tìm ra thẻ hai mặt đỏ bằng cách sử dụng máy nhiều nhất n lần hay không?
Đề chọn đội dự tuyển QG môn Toán năm 2022 2023 trường chuyên Quốc học Huế
Nội dung Đề chọn đội dự tuyển QG môn Toán năm 2022 2023 trường chuyên Quốc học Huế Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội dự tuyển học sinh giỏi cấp Quốc gia môn Toán năm học 2022 – 2023 trường THPT chuyên Quốc học Huế, tỉnh Thừa Thiên Huế. Trích dẫn Đề chọn đội dự tuyển QG môn Toán năm 2022 – 2023 trường chuyên Quốc học Huế : + Cho P(x) là một đa thức có hệ số thực, khác đa thức không, thỏa mãn (x – 1)P(x + 1) = (x + 2)P(x) với mọi x thuộc R và [P(22)]2 = P(23). Tìm đa thức P(x). + Cho A là một tập hữu hạn sao cho tồn tại dãy số (an) lấy giá trị trong A thỏa mãn tính chất: với mọi i, j thuộc N* sao cho |i – j| là số nguyên tố thì ai khác aj (ta quy ước số hạng đầu tiên của dãy số là a1). Tìm số phần tử ít nhất có thể của tập hợp A? + Cho tam giác ABC nội tiếp đường tròn (O), BC là dây cung cố định không đi qua O và A là điểm thay đổi trên cung lớn BC của (O) sao cho ABC là tam giác nhọn và AB > BC, AC > BC. Gọi P là điểm trên đoạn thẳng AB, Q là điểm trên đoạn thẳng AC sao cho P khác B, C khác Q và BQ = BC = CP. Gọi H là trực tâm của tam giác ABC và K là tâm đường tròn ngoại tiếp tam giác APQ. Chứng minh rằng khi A di động thì đường thẳng HK luôn đi qua một điểm cố định.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Đồng Nai
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Đồng Nai Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia môn Toán bậc THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đồng Nai; kỳ thi được diễn ra vào ngày 23 tháng 09 năm 2022. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Đồng Nai : + Cho f(x) là một đa thức bậc 100, với các hệ số nguyên, trong đó hệ số cao nhất bằng 1. Hỏi f(x) có nhiều nhất là bao nhiêu nghiệm nằm trong khoảng (0;1)? + Chứng minh rằng với mọi số nguyên dương k, tồn tại số nguyên dương n để n^n + 2023 chia hết cho 2^k. + Cho các số nguyên dương m, n sao cho m là một số lẻ và n không chia hết cho 3. Chứng minh rằng bảng m x n không thể được phủ khít bằng cách sử dụng các hình vuông 2 x 2 và 3 x 3.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Hà Tĩnh
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Hà Tĩnh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia môn Toán bậc THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; kỳ thi được diễn ra trong hai ngày: 22/09/2022 (vòng 1) và 23/09/2022 (vòng 2). Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Hà Tĩnh : + Cho trước a, b thuộc N* thỏa mãn a2 + b2 là tích của các số nguyên tố phân biệt và mỗi số nguyên tố đó đều có dạng 8k -3 với k thuộc N*. a) Giả sử tồn tại p = 8l – 3 (l thuộc N*) là một ước nguyên tố của a4 + b4. Chứng minh rằng p là ước của cả a và b. b) Tìm tất cả các cặp (m; n) với m,n thuộc Z mà am + bn và an – bm là các số chính phương. + Với mỗi cặp số nguyên dương (m; n), giả sử ban đầu có m + n hộp được đánh số từ 1 đến m + n, trong đó m hộp đầu tiên mỗi hộp chứa 1 bi đen và n hộp còn lại mỗi hộp chứa 1 bi trắng. Trong mỗi bước, ta được quyền chuyển một bi đen từ hộp i sang hộp i + 1 và một bi trắng từ hộp j sang hộp j – 1 với điều kiện i – j là một số chẵn. Ở đây giả sử rằng mỗi hộp đều đủ lớn để có thể chứa toàn bộ số bi. Cặp số (m; n) được gọi là tốt nếu sau hữu hạn bước chuyển thì n hộp đầu tiên mỗi hộp chứa 1 bi trắng và m hộp còn lại mỗi hộp chứa 1 bi đen. Nếu trái lại thì ta nói (m; n) là cặp xấu. 1) Chứng minh rằng cặp (1; 2021) là cặp xấu. b) Tìm số cặp số nguyên dương (m; n) tốt trong mỗi trường hợp một m + n = 2022 và m + n = 2023. + An và Bình đến cửa hàng mua kẹo. Trong cửa hàng có các túi kẹo loại 1 chiếc, 2 chiếc, 4 chiếc … 2^30 chiếc. Mỗi loại có nhiều túi. Mỗi bạn chọn mua một số túi ở nhiều loại và mỗi loại có thể mua nhiều túi. a) Số túi ít nhất An cần phải mua để có đúng 1000 chiếc kẹo là bao nhiêu? b) Có bao nhiêu cách chọn 5 túi kẹo đôi một khác loại sao cho tổng số chiếc kẹo được chọn không vượt quá 2023 và nếu túi loại 2^n được chọn (n thuộc N và n =< 29) thì túi loại 2^n+1 không được chọn? c) Giả sử sau khi mua, An và Bình lần lượt có n và n + 1 (n thuộc N và 0 =< n =< 2023) chiếc kẹo, đồng thời An có nhiều hơn Bình 7 túi kẹo. Có bao nhiêu giá trị n thỏa mãn các điều kiện trên, biết An và Bình luôn mua ít túi nhất có thể?

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6