Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

160 câu vận dụng cao tổ hợp - xác suất ôn thi THPT môn Toán

Tài liệu gồm 79 trang, được sưu tầm và tổng hợp bởi Tư Duy Mở Trắc Nghiệm Toán Lý, tuyển chọn 160 câu vận dụng cao (VDC) tổ hợp – xác suất có đáp án và lời giải chi tiết, giúp học sinh ôn thi THPT môn Toán. Trích dẫn tài liệu 160 câu vận dụng cao tổ hợp – xác suất ôn thi THPT môn Toán: + Cho tập hợp A = {1; 2; 3; 4; . . . ; 100}. Gọi S là tập hợp gồm tất cả các tập con của A, mỗi tập con này gồm 3 phần tử của A và có tổng bằng 91. Chọn ngẫu nhiên một phần tử của S. Xác suất chọn được phần tử có ba số lập thành một cấp số nhân bằng? + Có 10 học sinh lớp A, 8 học sinh lớp B được xếp ngẫu nhiên vào một bản tròn (hai cách xếp được coi là giống nhau nếu cách xếp này là kết quả của cách xếp kia khi ta thực hiện phép quay bàn ở tâm một góc nào đó). Tính xác suất để không có hai học sinh bất kì nào của lớp B đứng cạnh nhau. [ads] + Trong kỳ thi tốt nghiệp THPT năm học 2019 – 2020, mỗi phòng thi gồm 24 thí sinh xếp vào 24 chiếc bàn khác nhau. Bạn An là một thí sinh dự thi 4 môn (Toán, Văn, Ngoại Ngữ, Khoa học tự nhiên), cả 4 lần thi đều thi tại 1 phòng thi duy nhất. Giám thị xếp thí sinh vào vị trí một cách ngẫu nhiên. Tính xác suất để trong 4 lần thi An có đúng 2 lần ngồi vào cùng 1 vị trí.

Nguồn: toanmath.com

Đăng nhập để đọc

Trắc nghiệm nâng cao tổ hợp và xác suất - Đặng Việt Đông
Tài liệu trắc nghiệm nâng cao tổ hợp và xác suất do thầy Đặng Việt Đông biên soạn tuyển tập các câu hỏi và bài tập trắc nghiệm vận dụng cao chủ đề tổ hợp và xác suất có đáp án và lời giải chi tiết trong chương trình Đại số và Giải tích 11 chương 2, các câu hỏi trong tài liệu có mức độ khó cao, được trích dẫn từ các đề thi thử môn Toán nhằm giúp học sinh ôn luyện chuẩn bị cho kỳ thi THPT Quốc gia.
Chuyên đề tổ hợp - xác suất - Bùi Trần Duy Tuấn
giới thiệu đến bạn đọc tài liệu chuyên đề tổ hợp – xác suất do thầy Bùi Trần Duy Tuấn biên soạn, tài liệu gồm 180 trang bao gồm kiến thức cơ bản, phân dạng toán, ví dụ minh họa và tuyển chọn các bài tập trắc nghiệm có lời giải chi tiết các chủ đề quy tắc đếm, hoán vị – chỉnh hợp – tổ hợp, tính toán liên quan đến các công thức, nhị thức NewTơn, biến cố và xác suất của biến cố trong chương trình Đại số và Giải tích 11 chương 2. Tài liệu thích hợp với học sinh khối 11 trong quá trình tự học chương tổ hợp – xác suất và học sinh khối 12 nhằm ôn tập lại các kiến thức tổ hợp – xác suất đã học để chuẩn bị cho kỳ thi THPT Quốc gia. CHỦ ĐỀ 1 : QUY TẮC ĐẾM A. Kiến thức cơ bản cần nắm 1. Quy tắc cộng 2. Quy tắc nhân 3. Các bài toán đếm cơ bản B. Một số bài toán minh họa C. Bài tập trắc nghiệm CHỦ ĐỀ 2 : HOÁN VỊ – CHỈNH HỢP – TỔ HỢP A. Kiến thức cơ bản cần nắm 1. Hoán vị 2. Chỉnh hợp 3. Tổ hợp B. Một số bài toán điển hình C. Bài tập trắc nghiệm + Dạng 1. Bài toán đếm + Dạng 2. Xếp vị trí – cách chọn, phân công công việc + Dạng 3. Đếm tổ hợp liên quan đến hình học CHỦ ĐỀ 3 : TÍNH TOÁN LIÊN QUAN ĐẾN CÁC CÔNG THỨC A. Nhắc lại các công thức B. Bài tập trắc nghiệm [ads] CHỦ ĐỀ 4 : NHỊ THỨC NEWTƠN A. Kiến thức cần nắm 1. Công thức nhị thức Newtơn 2. Tam giác Pascal B. Các dạng toán liên quan đến nhị thức Newtơn 1. Xác định các hệ số trong khai triển nhị thức Newtơn a. Tìm hệ số của số hạng chứa x^m trong khai triển (ax^p + bx^q)^n b. Xác định hệ số lớn nhất trong khai triển nhị thức Niutơn c. Xác định hệ số của số hạng trong khai triển P(x) = (ax^t + bx^p + cx^q)^n 2. Các bài toán tìm tổng a. Thuần nhị thức Newton b. Sử dụng đạo hàm cấp 1, cấp 2 c. Sử dụng tích phân C. Bài tập trắc nghiệm + Dạng 1. Xác định các hệ số, số hạng trong khai triển nhị thức Newton + Dạng 2. Các bài toán tìm tổng CHỦ ĐỀ 5 : BIẾN CỐ VÀ XÁC SUẤT CỦA BIẾN CỐ A. Kiến thức cần nắm 1. Phép thử ngẫu nhiên và không gian mẫu 2. Biến cố 3. Xác suất của biến cố B. Các dạng toán về xác suất 1. Sử dụng định nghĩa cổ điển về xác xuất – quy về bài toán đếm a. Bài toán tính xác suất sử dụng định nghĩa cổ điển bằng cách tính trực tiếp số phần tử thuận lợi cho biến cố b. Tính xác suất sử dụng định nghĩa cổ điển bằng phương pháp gián tiếp 2. Sử dụng quy tắc tính xác suất a. Phương pháp b. Một số bài toán minh họa C. Bài tập trắc nghiệm + Dạng 1. Xác định phép thử, không gian mẫu và biến cố + Dạng 2. Tìm xác suất của biến cố + Dạng 3. Các quy tắc tính xác suất
Phân dạng và bài tập chuyên đề tổ hợp - xác suất - Trần Quốc Nghĩa
Tài liệu gồm 75 trang phân dạng, hướng dẫn giải, bài tập tự luận và trắc nghiệm các dạng toán về chủ đề Tổ hợp – Xác suất (Chương 2 – Đại số và Giải tích 11) Vấn đề 1. QUI TẮC ĐẾM + Dạng 1. Sử dụng các qui tắc để thực hiện bài toán đếm số phương án + Dạng 2. Sử dụng các qui tắc để thực hiện bài toán đếm số các hình thành từ tập A Vấn đề 2. HOÁN VỊ – CHỈNH HỢP – TỔ HỢP + Dạng 1. Thực hiện bài toán đếm theo hoán vị, tổ hợp, chỉnh hợp + Dạng 2. Rút gọn và tính các giá trị của biểu thức + Dạng 3. Chứng minh đẳng thức, bất đẳng thức + Dạng 4. Giải phương trình, hệ phương trình, bất phương trình Vấn đề 3. NHỊ THỨC NIU-TƠN + Dạng 1. Khai triển nhị thức Niu-tơn + Dạng 2. Giá trị của hệ số trong khai triển nhị thức Niu-tơn + Dạng 3. Tính tổng + Dạng 4. Chứng minh + Dạng 5. Giải phương trình, bất phương trình [ads] Vấn đề 4. BIẾN CỐ VÀ XÁC SUẤT CỦA BIẾN CỐ + Dạng 1. Mô tả không gian mẫu. Tìm số phần tử của không gian mẫu + Dạng 2. Xác định biết cố. Tính số phần tử của tập hợp này + Dạng 3. Tính xác suất của một biến cố Vấn đề 5. CÁC QUI TẮC TÍNH XÁC SUẤT + Dạng 1. Xác định tính xung khắc, độc lập + Dạng 2. Mô tả biến cố theo các phép toán hoặc phiên dịch thành lời + Dạng 3. Tìm xác suất của một biến cố bằng cách sử dụng công thức xác suất + Dạng 4. Tìm xác suất của biến cố là hợp của các biến cố xung khắc + Dạng 5. Tìm xác suất của biến cố là giao các biến cố độc lập Vấn đề 6. [NC] BIẾN NGẪU NHIÊN RỜI RẠC + Dạng 1. Xác định tập giá trị của một biến ngẫu nhiên rời rạc + Dạng 2. Lập bảng phân phối bố xác suất của biến ngẫu nhiên rời rạc + Dạng 3. Cho bảng phân phối bố xác suất của biến ngẫu nhiên + Dạng 4. Tính kì vọng, phương sai, độ lệch chuẩn của một biến ngẫu nhiên rời rạc BÀI TẬP TỔNG HỢP CHỦ ĐỀ TỔ HỢP – XÁC SUẤT VÀ BÀI TẬP TRONG CÁC ĐỀ THI ĐH – CĐ BÀI TẬP TRẮC NGHIỆM CHỦ ĐỀ TỔ HỢP – XÁC SUẤT BẢNG ĐÁP ÁN TRẮC NGHIỆM
74 bài toán xác suất chọn lọc - Nguyễn Hữu Biển
Tài liệu gồm 26 trang.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6