Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán khoảng cách trong hình học không gian - Trần Đình Cư

Tài liệu gồm 70 trang trình bày các dạng toán tính khoảng cách trong hình học không gian, phương pháp giải và bài tập trắc nghiệm có lời giải cho tiết. + DẠNG 1. KHOẢNG CÁCH TỪ 1 ĐIỂM ĐẾN ĐƯỜNG THẲNG Việc dựng hình chiếu của một điểm trên đường thẳng trong không gian, ta có thể làm theo 2 cách sau: + Dựng mặt phẳng đi qua điểm và đường thẳng đã cho. Rồi trên mặt phẳng đó qua điểm đã cho dựng đoạn vuông góc từ điểm tới đường thẳng. + Dựng một mặt phẳng đi qua điểm đã cho và vuông góc với đường thẳng, lúc đó giao điểm của đường thẳng với mặt phẳng vừa dựng chính là hình chiếu của điểm trên đường thẳng. Sau khi đã xác định được khoảng cách cần tính, ta dùng các hệ thức lượng trong tam giác, đa giác, đường tròn … để tính toán. [ads] + DẠNG 2. KHOẢNG CÁCH TỪ MỘT ĐIỂM ĐẾN MẶT PHẲNG + DẠNG 3. KHOẢNG CÁCH GIỮA HAI MẶT PHẲNG SONG SONG Việc tính khoảng cách giữa một đường thẳng và một mặt phẳng song song với nó, hoặc tính khoảng cách giữa hai mặt phẳng song song đều quy về việc tính khoảng cách từ điểm đến mặt phẳng. Cần lưu ý việc chọn điểm trên đường hoặc trên mặt sao cho việc xác định khoảng cách được đơn giản nhất. + DẠNG 4. KHOẢNG CÁCH HAI ĐƯỜNG THẲNG CHÉO NHAU

Nguồn: toanmath.com

Đăng nhập để đọc

Chuyên đề Hình học không gian - Lưu Huy Thưởng
Tài liệu gồm 55 trang trình bày lý thuyết, phân dạng, phương pháp giải toán và các bài tập chuyên đề hình học không gian. KIẾN THỨC CƠ BẢN 1. Xác định một mặt phẳng + Ba điểm không thẳng hàng thuộc mặt phẳng. + Một điểm và một đường thẳng không đi qua điểm đó thuộc mặt phẳng. + Hai đường thẳng cắt nhau thuộc mặt phẳng. 2. Một số qui tắc vẽ hình biểu diễn của hình không gian + Hình biểu diễn của đường thẳng là đường thẳng, của đoạn thẳng là đoạn thẳng. + Hình biểu diễn của hai đường thẳng song song là hai đường thẳng song song, của hai đường thẳng cắt nhau là hai đường thẳng cắt nhau. + Hình biểu diễn phải giữ nguyên quan hệ thuộc giữa điểm và đường thẳng. + Đường nhìn thấy vẽ nét liền, đường bị che khuất vẽ nét đứt. CÁC DẠNG TOÁN THƯỜNG GẶP §1. ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN Dạng toán 1. Tìm giao tuyến của hai mặt phẳng. Dạng toán 2. Tìm giao điểm của đường thẳng và mặt phẳng. Dạng toán 3. Chứng minh ba điểm thẳng hàng, ba đường thẳng đồng qui. Dạng toán 4. Xác định thiết diện của một hình chóp với một mặt phẳng (đi qua 3 điểm). [ads] §2. HAI ĐƯỜNG THẲNG SONG SONG Dạng toán 1. Chứng minh hai đường thẳng song song. Dạng toán 2. Tìm giao tuyến của hai mặt phẳng. §3. ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG Dạng toán 1. Chứng minh đường thẳng song song với mặt phẳng. Dạng toán 2. Tìm giao tuyến của hai mặt phẳng. §4. HAI MẶT PHẲNG SONG SONG Dạng toán 1. Chứng minh hai mặt phẳng song song. Dạng toán 2. Tìm giao tuyến của hai mặt phẳng. §5. HAI ĐƯỜNG THẲNG VUÔNG GÓC §6. ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG Dạng toán 1. Chứng minh đường thẳng vuông góc với mặt phẳng. Chứng minh hai đường thẳng vuông góc. Dạng toán 2. Tìm thiết diện qua một điểm và vuông góc với một đường thẳng. Dạng toán 3. Góc giữa đường thẳng và mặt phẳng. §7. HAI MẶT PHẲNG VUÔNG GÓC Dạng toán 1. Góc giữa hai mặt phẳng. Dạng toán 2. Chứng minh hai mặt phẳng vuông góc. Chứng minh đường thẳng vuông góc với mặt phẳng. Dạng toán 3. Tính diện tích hình chiếu của đa giác. §8. KHOẢNG CÁCH Dạng toán 1. Khoảng cách giữa hai đường thẳng chéo nhau. Dạng toán 2. Tính khoảng cách từ một điểm đến đường thẳng, mặt phẳng. Khoảng cách giữa đường thẳng và mặt phẳng song song. Khoảng cách giữa hai mặt phẳng song song. §9. THỂ TÍCH KHỐI ĐA DIỆN Dạng toán 1. Khối chóp có cạnh bên vuông góc với đáy. Dạng toán 2. Khối chóp có mặt bên vuông góc với đáy. Dạng toán 3. Khối chóp đều. Dạng toán 4. Phương pháp tỷ số thể tích. §10. THỂ TÍCH KHỐI LĂNG TRỤ Dạng toán 1. Khối lăng trụ đứng có chiều cao hay cạnh đáy. Dạng toán 2. Lăng trụ đứng có góc giữa đường thẳng và mặt phẳng. Dạng toán 3. Lăng trụ đứng có góc giữa hai mặt phẳng. Dạng toán 4. Khối lăng trụ xiên. TUYỂN TẬP ĐỀ THI ĐẠI HỌC CÁC NĂM
Nắm trọn chuyên đề thể tích khối đa diện ôn thi THPT Quốc gia môn Toán
Tài liệu gồm 464 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp các dạng bài tập thường gặp về chuyên đề thể tích khối đa diện, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 ôn tập hướng đến kỳ thi tốt nghiệp THPT Quốc gia môn Toán năm học 2023 – 2024. Dạng 1: Mở đầu về thể tích khối đa diện. Dạng 2: Thể tích khối chóp có cạnh bên vuông góc với đáy. Dạng 3: Thể tích khối chóp có mặt bên vuông góc với đáy. Dạng 4: Thể tích khối chóp đều. Dạng 5: Tổng hợp về thể tích khối chóp. Dạng 6: Tỷ số thể tích khối chóp. Dạng 7: Thể tích khối lăng trụ đứng. Dạng 8: Thể tích khối đa diện đều. Dạng 9: Thể tích khối lăng trụ xiên. Dạng 10: Tỷ số thể tích khối lăng trụ. Dạng 11: Góc, khoảng cách liên quan đến thể tích khối đa diện. Dạng 12: Cực trị khối đa diện.
Chuyên đề trắc nghiệm tỉ số thể tích
Tài liệu gồm 56 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề tỉ số thể tích, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 1. I. LÝ THUYẾT TRỌNG TÂM 1. Kỹ thuật đổi đỉnh (đáy không đổi). 2. Kỹ thuật chuyển đáy (đường cao không đổi). 3. Tỉ số thể tích của khối chóp. 4. Tỉ số thể tích của khối lăng trụ. II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI + Dạng 1. Tỉ số thể tích của khối chóp. + Dạng 2: Tỉ số thể tích khối lăng trụ. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm thể tích khối lăng trụ
Tài liệu gồm 30 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề thể tích khối lăng trụ, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 1. I. LÝ THUYẾT TRỌNG TÂM II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI + Dạng 1: Thể tích khối lăng trụ đứng. + Dạng 2: Thể tích khối lăng trụ xiên. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6