Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh vào THPT môn Toán năm 2018 2019 sở GD và ĐT Quảng Ninh

Nội dung Đề tuyển sinh vào THPT môn Toán năm 2018 2019 sở GD và ĐT Quảng Ninh Bản PDF - Nội dung bài viết Đề tuyển sinh vào lớp 10 THPT môn Toán năm 2018-2019 sở GD và ĐT Quảng Ninh Đề tuyển sinh vào lớp 10 THPT môn Toán năm 2018-2019 sở GD và ĐT Quảng Ninh Đề tuyển sinh vào lớp 10 THPT môn Toán năm 2018-2019 sở GD và ĐT Quảng Ninh được biên soạn nhằm đánh giá năng lực học Toán của các em học sinh khối lớp 9. Đề bao gồm 5 bài toán tự luận, thời gian làm bài là 2 tiếng. Mục tiêu là phân loại học sinh để các trường THPT tại tỉnh Quảng Ninh có thể tuyển sinh vào khối 10 theo tiêu chí của mỗi trường. Để lấy ví dụ, một trong các bài toán trong đề tuyển sinh là: Một xe ô tô đi từ A đến B theo đường quốc lộ cũ dài 156 km với vận tốc không đổi. Khi từ B trở về A, xe đi đường cao tốc mới nên quãng đường giảm được 36 km so với lúc đi và vận tốc tăng là 36 km/h. Học sinh cần tính vận tốc của ô tô khi đi từ A đến B biết rằng thời gian đi nhiều hơn thời gian về là 1 giờ 45 phút. Qua các bài toán trong đề tuyển sinh, các em học sinh sẽ được thử thách về kiến thức và kỹ năng Toán để chuẩn bị cho việc chuyển sang trình độ THPT. Đây cũng là cơ hội để thể hiện năng lực và sự sáng tạo của các em trong giải quyết vấn đề.

Nguồn: sytu.vn

Đăng nhập để đọc

Đề tuyển sinh lớp 10 chuyên môn Toán năm 2023 - 2024 sở GDĐT Lào Cai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Lào Cai; kỳ thi được diễn ra vào Chủ Nhật ngày 04 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 chuyên môn Toán năm 2023 – 2024 sở GD&ĐT Lào Cai : + Gieo một con súc sắc cân đối và đồng chất hai lần liên tiếp. Tính xác suất sao cho tổng số chấm trên mặt xuất hiện của con súc sắc trong hai lần gieo không lớn hơn 6. + Lúc 7 giờ 30 phút hai xe ô tô cùng xuất phát từ A đến B với vận tốc của mỗi xe không thay đổi trên cả quãng đường. Xe thứ hai đến B sớm hơn xe thứ nhất đúng 1 giờ. Lúc quay trở về, xe thứ nhất tăng vận tốc thêm 5km/h, xe thứ hai vẫn giữ nguyên vận tốc như lúc đi nhưng dừng ở trạm nghỉ 36 phút, do đó xe thứ hai về đến A cùng lúc với xe thứ nhất. Biết rằng quãng đường từ A đến B là 180 km. Hỏi lúc đi, xe thứ nhất đến B lúc mấy giờ? + Số nguyên dương m được gọi là số tốt nếu tổng các bình phương của tất cả các ước dương của nó (không tính 1 và m) bằng 6m + 8. Chứng minh rằng nếu có hai số nguyên tố p, q phân biệt và thỏa mãn pq là số tốt thì pq + 2 là số chính phương.
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT An Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh An Giang; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT An Giang : + Cho phương trình bậc hai x2 – 2mx + 2m – 3 = 0 (m là tham số). a. Giải phương trình khi m = 0,5. b. Tìm m để phương trình có hai nghiệm trái dấu. + Cho tam giác ABC (AB < AC) nội tiếp trong đường tròn (O) tâm O đường kính BC, đường thẳng qua O vuông góc với BC cắt AC tại D. a. Chứng minh rằng tứ giác ABOD nội tiếp. b. Tiếp tuyến tại điểm A với đường tròn (O) cắt đường thẳng BC tại điểm P, cho PB = BO = 2cm. Tính độ dài đoạn PA và số đo góc APC. + Cây bạch đàn mỗi năm cao thêm 1m, cây phượng mỗi năm cao thêm 50cm. Lúc mới vào trường học, cây bạch đàn cao 1m và cây phượng cao 3m. Giả sử rằng tốc độ tăng trưởng chiều cao của hai loại cây không đổi qua các năm. a. Viết hàm số biểu diễn chiều cao mỗi loại cây theo số năm tính từ lúc mới vào trường. b. Sau bao nhiêu năm so với lúc mới vào trường thì cây bạch đàn sẽ cao hơn cây phượng?
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Ninh Bình : + Cho tam giác ABC nhọn, không cân, nội tiếp đường tròn (O). Gọi E là điểm đối xứng của B qua AC và F điểm đối xứng của C qua AB. Đường thẳng BE cắt đường thẳng CF tại H. a) Chứng minh các tứ giác AHBF và AHCE là tứ giác nội tiếp. b) Đường tròn ngoại tiếp các tam giác ABE và ACF cắt nhau tại điểm thứ hai là D. Chứng minh F, B, D thẳng hàng và DA là tia phân giác của góc EDF. c) Gọi P, Q lần lượt là tâm đường tròn ngoại tiếp các tam giác ABE, ACF. Chứng minh sáu điểm B, C, D, O, P, Q cùng thuộc một đường tròn tâm I và giao điểm (khác D) của đường thẳng AD với đường tròn (I) là trực tâm tam giác APQ. d) Giả sử H thuộc đường tròn (I). Chứng minh các đường thẳng AI, DH, BC, PQ đồng quy. + Cho p là một số nguyên tố. a) Chứng minh nếu p lẻ và tồn tại số nguyên x sao cho (x + 1) chia hết cho p thì (p – 1) chia hết cho 4. Chứng minh 2023p + 23^p – 24 không là số chính phương. + Người ta tô màu mỗi điểm trên mặt phẳng bởi một trong hai màu đỏ hoặc xanh. Chứng minh: a) Tồn tại một tam giác vuông cân có ba đỉnh được tô cùng màu. b) Tồn tại một tam giác vuông có cạnh huyền bằng 2, một cạnh góc vuông bằng 1 và ba đỉnh được tô cùng màu.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Tây Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Tây Ninh; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Tây Ninh : + Cho parabol (P): y = 2×2 và đường thẳng (d): y = (7 – m)x + 3m – 3. Tìm các giá trị nguyên âm của m để (P) cắt (d) tại hai điểm phân biệt có hoành độ nhỏ hơn 4. + Cho đường tròn (O) đường kính AB. Trên (O) lấy hai điểm C, D nằm khác phía đối với AB và CD không đi qua O. Gọi E là giao điểm của AC và BD, F là giao điểm của AD và BC, I là trung điểm đoạn thẳng EF. Chứng minh IC là tiếp tuyến của (O). + Cho đường tròn (O) và điểm M nằm ngoài (O), vẽ tiếp tuyến MA và cát tuyến MBC không đi qua O (MB < MC). Gọi H là hình chiếu vuông góc của A trên MO. a) Chứng minh: Tứ giác BHOC nội tiếp. b) Vẽ đường thẳng qua B song song với AC cắt các đường thẳng MA, AH lần lượt tại K, I. Chứng minh KB = BI.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6