Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài toán tính góc giữa hai mặt phẳng

Bài toán tính góc giữa hai mặt phẳng là bài toán tương đối khó và nằm ở mức vận dụng và vận dụng cao, bên cạnh những phương pháp truyền thống như dựng hình tạo góc thì trong chủ đề này chúng ta sẽ cùng tìm hiểu tới 3 phương pháp giải quyết các bài toán trắc nghiệm có thể nói gần như mọi bài toán tính góc giữa 2 mặt phẳng mà ta hay gặp. I. CÁC PHƯƠNG PHÁP XỬ LÝ PHƯƠNG PHÁP 1 . SỬ DỤNG CÔNG THỨC HÌNH CHIẾU. Đây là một tính chất khá là cơ bản trong chương trình hình học 11 mà ta cần nắm rõ, công thức của nó rất đơn giản như sau: Cho hình S thuộc mặt phẳng (P), hình S’ là hình chiếu của S lên mặt phẳng (Q), khi đó ta có cosin góc giữa hai mặt phẳng (P) và (Q) được tính theo công thức cosα = S’/S. PHƯƠNG PHÁP 2 . SỬ DỤNG CÔNG THỨC GÓC NHỊ DIỆN. Đây là một công cụ rất mạnh để giải quyết các bài toán tính góc giữa 2 mặt phẳng, hầu hết các bài toán đơn giản hay đến phức tạp đều có thể giải bằng phương pháp này. Các bước thực hiện: Bước 1: Đưa góc giữa hai mặt phẳng về góc giữa hai mặt phẳng kề nhau của một tứ diện. Chú ý điều này luôn thực hiện được. Bước 2: Sử dụng công thức: V = 2S1S2sinα/3a. Trong đó S1, S2 lần lượt là diện tích hai tam giác kề nhau của tứ diện, a là độ dài giao tuyến, còn α là góc giữa hai mặt phẳng cần tìm. [ads] PHƯƠNG PHÁP 3 . SỬ DỤNG PHƯƠNG PHÁP TỌA ĐỘ HÓA. Nói chung đây cũng là một phương pháp rất mạnh, tuy nhiên nhược điểm của nó là phải nhớ công thức tính hơi cồng kềnh và chỉ áp dụng cho những trường hợp ta dựng được hoặc trong bài toán có yếu tố 3 đường vuông góc. Cách thực hiện: Bước 1: Xác định 3 đường vuông góc chung. Bước 2: Gắn hệ trục tọa độ Oxyz, coi giao điểm của 3 đường vuông góc chung là gốc tọa độ. Bước 3: Từ giả thiết tìm tọa độ của các điểm có liên quan tới giả thiết. Bước 4: Áp dụng công thức cần tính để suy ra kết quả. Theo kinh nghiệm thì những bài toán có giả thiết liên quan tới hình hộp chữ nhật, hình lập phương thì thì ta nên sử dụng phương pháp tọa độ hóa, ngoài ra các bài có yếu tố một cạnh của chóp vuông góc với đáy hay liên quan tới lăng trụ đứng ta cũng có thể sử dụng phương pháp này nhưng tùy vào từng bài mà ta có hướng đi khác nhau, có thể là sử dụng phương pháp 2 hoặc sử dụng phương pháp 1, tùy vào kỹ năng của người làm bài. II. BÀI TẬP TỰ LUYỆN

Nguồn: toanmath.com

Đăng nhập để đọc

350 câu hỏi trắc nghiệm chuyên đề hình học không gian - Nhóm Toán
Tài liệu 350 câu hỏi trắc nghiệm chuyên đề hình học không gian được hoàn thiện và chia sẻ bởi các thành viên trong groups nhóm Toán, gồm 62 trang được chia thành 7 đề, mỗi đề gồm 50 câu hỏi. Trích dẫn tài liệu : + Chọn khẳng định đúng: A. Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì hai đường thẳng đó song song với nhau B. Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì hai đường thẳng đó song song với nhau C. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì hai đường thẳng đó song song với nhau D. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì hai đường thẳng đó song song với nhau [ads] + Trong các mệnh đề sau, mệnh đề nào đúng? A. Tồn tại một hình đa diện có số đỉnh và số mặt bằng nhau B. Tồn tại một hình đa diện có số cạnh bằng số đỉnh C. Số đỉnh và số mặt của một hình đa diện luôn luôn bằng nhau D. Tồn tại một hình đa diện có số cạnh và số mặt bằng nhau + Cho khối tứ diện đều ABCD. Điểm M thuộc miền trong của khối tứ diện sao cho thể tích các khối MBCD, MCDA, MDAB, MABC bằng nhau. Khi đó: A. Tất cả các mệnh đề trên đều đúng B. M cách đều tất cả các mặt của khối tứ diện đó C. M là trung điểm của đôạn thẳng nối trung điểm của 2 cạch đối diện của tứ diện D. M cách đều tất cả các đỉnh của khối tứ diện đó
225 bài toán hình học không gian trong các đề thi thử 2016 - Trần Văn Tài
Tài liệu 225 bài toán hình học không gian trong các đề thi thử 2016 do thầy Trần Văn Tài biên soạn, các bài toán được giải chi tiết. Trích dẫn tài liệu : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 4a, cạnh SA vuông góc với mặt phẳng đáy. Góc giữa cạnh SC và mặt phẳng (ABCD) bằng 60 độ, M là trung điểm của BC, N là điểm thuộc cạnh AD sao cho DN = a. Tính theo a thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SB và MN. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 2a, AD = a√3. Mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy. Biết đường thẳng SD tạo với mặt đáy một góc 45 độ. Tính thể tích của khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SA và BD. + Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Đường thẳng SA vuông góc với mặt đáy. Góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 60 độ. 1. Tính thể tích khối chóp S.ABC theo a. 2. Tính khoảng cách giữa hai đường thẳng AC và SB theo a.
Chuyên đề Thể tích - Góc - Khoảng cách trong không gian - Đỗ Bá Thành
Tài liệu gồm 36 trang trình bày các vấn đề về thể tích, góc và khoảng cách trong hình học không gian, tài liệu do tác giả Đỗ Bá Thành biên soạn. + Vấn đề 1: Thể tích khối chóp + Vấn đề 2: Thể tích khối lăng trụ + Vấn đề 3: Góc và các bài toán liên quan + Vấn đề 4: Khoảng cách [ads]
Các bài tập khối đa diện trong đề thi Đại học
Tài liệu gồm 15 trang tuyển tập và giải chi tiết các bài tập khối đa diện trong đề thi Đại học. + Bài 1. Tính thể tích của một khối đa diện + Bài 2. Sử dụng phương pháp thể tích để tìm khoảng cách + Bài 3. Các bài toán về thể tích khối đa diện có kết hợp với việc tìm giá trị lớn nhất và nhỏ nhất + Bài 4. Các bài toán về so sánh thể tích [ads]

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6