Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài toán GTLN - GTNN biểu thức mũ - lôgarit nhiều biến số

Tài liệu gồm 36 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán GTLN – GTNN biểu thức mũ – lôgarit nhiều biến số; đây là dạng toán VDC thường gặp trong chương trình Toán 12 phần Giải tích chương 2. BÀI TOÁN GTLN – GTNN BIỂU THỨC MŨ – LOGARIT HAI BIẾN SỐ Cách 1: Đánh giá áp dụng BĐT cơ bản đã biết như BĐT Côsi và BĐT Bunhiacopxki. Cách 2: Áp dụng phương pháp hàm số, hàm đặc trưng. Thông thường ta thực hiện theo các bước sau: Biến đổi các số hạng chứa trong biểu thức về cùng một đại lượng giống nhau. Đưa vào một biến mới t bằng cách đặt t bằng đại lượng đã được biến đổi như trên. Xét hàm số f t theo biến t. Khi đó ta hình thành được bài toán tương đương sau: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số f t với t D. Lúc này ta sử dụng đạo hàm để tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số f t với t D. Chú ý : Ta chứng minh được: Nếu hàm số y fx luôn đồng biến (hoặc luôn nghịch biến) và liên tục trên D mà phương trình fx k có nghiệm thì nghiệm đó là nghiệm duy nhất trên D. Nếu hàm số y fx luôn đồng biến (hoặc luôn nghịch biến) và hàm số y gx luôn nghịch biến (hoặc luôn đồng biến) và liên tục trên D mà phương trình f x gx có nghiệm thì nghiệm đó là nghiệm duy nhất trên D. Nếu hàm số y fx luôn đồng biến (hoặc luôn nghịch biến) và liên tục trên D thì fx fy nếu x y (hoặc x y). Cách 3: Áp dụng hình học giải tích. BÀI TOÁN GTLN – GTNN BIỂU THỨC MŨ – LOGARIT NHIỀU BIẾN SỐ Cho xyz lần lượt là các số thực dương và thỏa mãn hệ phương trình sau 3log 3 3log 27 log 81 0 x y 3 3 x z xy yz. Khi biểu thức 5 4 P xyz đạt giá trị nhỏ nhất thì giá trị của 1000P nằm trong khoảng nào? Cho các số thực không âm abc thỏa mãn 2484 abc. Gọi M m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức S a b c 2 3. Giá trị của biểu thức 4 log M M m bằng? Cho ba số thực thay đổi abc 1 thỏa mãn abc 6. Gọi 1 2 x x là hai nghiệm của phương trình 2 log 2 log 3log log 2022 0 a a aa x b cx. Khi đó giá trị lớn nhất của 1 2 x x là?

Nguồn: toanmath.com

Đăng nhập để đọc

Tổng hợp lý thuyết lũy thừa - mũ - logarit - Lê Minh Tâm
Tài liệu gồm 125 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, tổng hợp lý thuyết chung và hướng dẫn giải các dạng bài tập chuyên đề lũy thừa – mũ – logarit, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12 phần Giải tích chương 2. Chủ đề 01. LŨY THỪA – HÀM SỐ LŨY THỪA. + Dạng 1.1. Rút gọn và tính giá trị biểu thức 6. + Dạng 1.2. So sánh các biểu thức chứa lũy thừa 7. + Dạng 1.3. Tập xác định hàm số lũy thừa 8. + Dạng 1.4. Đạo hàm số lũy thừa 9. + Dạng 1.5. Đồ thị hàm số lũy thừa 10. Chủ đề 02. LOGARIT. + Dạng 2.1. Tính giá trị biểu thức 12. + Dạng 2.2. Biểu diễn logarit 13. + Dạng 2.3. Mệnh đề đúng – sai 14. Chủ đề 03. HÀM SỐ MŨ – HÀM SỐ LOGARIT. + Dạng 3.1. Tập xác định của hàm số logarit 18. + Dạng 3.2. Đạo hàm hàm số mũ – logarit 20. + Dạng 3.3. Khảo sát hàm số mũ – logarit 21. Chủ đề 04. BÀI TOÁN LÃI SUẤT. Chủ đề 05. PHƯƠNG TRÌNH MŨ. + Dạng 5.1. Phương trình mũ cơ bản 31. + Dạng 5.2. Đưa về cùng cơ số 32. + Dạng 5.3. Logarit hóa 33. + Dạng 5.4. Đặt ẩn phụ dễ thấy 34. + Dạng 5.5. Đặt ẩn phụ với phương trình đẳng cấp 35. + Dạng 5.6. Đặt ẩn phụ với tích hai cơ số bằng 1 36. + Dạng 5.7. Phương pháp hàm số 37. + Dạng 5.8. Phương trình chứa tham số 39. Chủ đề 06. PHƯƠNG TRÌNH LOGARIT. + Dạng 6.1. Phương trình logarit cơ bản 41. + Dạng 6.2. Đưa về cùng cơ số 42. + Dạng 6.3. Mũ hóa 43. + Dạng 6.4. Đặt ẩn phụ dễ thấy 44. + Dạng 6.5. Phương pháp hàm số 45. + Dạng 6.6. Phương trình chứa tham số 47. Chủ đề 07. BẤT PHƯƠNG TRÌNH MŨ. + Dạng 7.1. Bất phương trình mũ cơ bản 50. + Dạng 7.2. Đưa về cùng cơ số 51. + Dạng 7.3. Đặt ẩn phụ 52. + Dạng 7.4. Logarit hóa 53. + Dạng 7.5. Chứa tham số 54. Chủ đề 08. BẤT PHƯƠNG TRÌNH LOGARIT. + Dạng 8.1. Bất phương trình logarit cơ bản 56. + Dạng 8.2. Đưa về cùng cơ số 57. + Dạng 8.3. Đặt ẩn phụ 58. + Dạng 8.4. Mũ hóa 59. + Dạng 8.5. Chứa tham số 60.
Bài giảng hàm số mũ và hàm số lôgarit Toán 11 CTST
Tài liệu gồm 169 trang, được biên soạn bởi thầy giáo Trần Đình Cư, bao gồm tóm tắt kiến thức cơ bản cần nắm, phân loại và phương pháp giải bài tập chuyên đề hàm số mũ và hàm số lôgarit trong chương trình môn Toán 11 Chân Trời Sáng Tạo (CTST). CHƯƠNG VI . HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT. BÀI 1 . PHÉP TÍNH LŨY THỪA. A. KIẾN THỨC CƠ BẢN CẦN NẮM. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP. Dạng 1. Rút gọn biểu thức. Dạng 2. Viết biểu thức dưới dạng lũy thừa. Dạng 3. So sánh. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA. D. BÀI TẬP TRẮC NGHIỆM. BÀI 2 . PHÉP TÍNH LÔGARIT. A. KIẾN THỨC CƠ BẢN CẦN NẮM. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP. Dạng 1. Rút gọn biểu thức. Dạng 2. Biểu diễn theo lôgarit. Dạng 3. So sánh. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA. D. BÀI TẬP TRẮC NGHIỆM. BÀI 3 . HÀM SỐ MŨ. HÀM SỐ LÔGARIT. A. KIẾN THỨC CƠ BẢN CẦN NẮM. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP. Dạng 1. Tìm tập xác định, tập giá trị của hàm số. Dạng 2. So sánh. Dạng 3. Đồ thị hàm số. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA. D. BÀI TẬP TRẮC NGHIỆM. BÀI 4 . PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH MŨ VÀ LÔGARIT. A. KIẾN THỨC CƠ BẢN CẦN NẮM. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP. Dạng 1. Đưa về cùng cơ số. Dạng 2. Phương pháp đặt ẩn phụ. Dạng 3. Logarit hóa, mũ hóa. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA. D. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP CUỐI CHƯƠNG VI. A. CÂU HỎI TRẮC NGHIỆM. B. BÀI TẬP TỰ LUẬN.
Bài giảng hàm số mũ và hàm số lôgarit Toán 11 Cánh Diều
Tài liệu gồm 170 trang, được biên soạn bởi thầy giáo Trần Đình Cư, bao gồm tóm tắt kiến thức cơ bản cần nắm, phân loại và phương pháp giải bài tập chuyên đề hàm số mũ và hàm số lôgarit trong chương trình môn Toán 11 Cánh Diều (CD). BÀI 1 . PHÉP TÍNH LŨY THỪA VỚI SỐ MŨ THỰC. A. KIẾN THỨC CƠ BẢN CẦN NẮM. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP. + Dạng 1. Rút gọn biểu thức. + Dạng 2. Viết biểu thức dưới dạng lũy thừa. + Dạng 3. So sánh. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA. D. BÀI TẬP TRẮC NGHIỆM. BÀI 2 . PHÉP TÍNH LÔGARIT. A. KIẾN THỨC CƠ BẢN CẦN NẮM. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP. + Dạng 1. Rút gọn biểu thức. + Dạng 2. Biểu diễn theo lôgarit. + Dạng 3. So sánh. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA. D. BÀI TẬP TRẮC NGHIỆM. BÀI 3 . HÀM SỐ MŨ. HÀM SỐ LÔGARIT. A. KIẾN THỨC CƠ BẢN CẦN NẮM. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP. + Dạng 1. Tìm tập xác định, tập giá trị của hàm số. + Dạng 2. So sánh. + Dạng 3. Đồ thị hàm số. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA. D. BÀI TẬP TRẮC NGHIỆM. BÀI 4 . PHƯƠNG TRÌNH MŨ, BẤT PHƯƠNG TRÌNH MŨ VÀ LÔGARIT. A. KIẾN THỨC CƠ BẢN CẦN NẮM. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP. + Dạng 1. Đưa về cùng cơ số. + Dạng 2. Phương pháp đặt ẩn phụ. + Dạng 3. Lôgarit hóa, mũ hóa. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA. D. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP CUỐI CHƯƠNG VI. A. BÀI TẬP TRẮC NGHIỆM. B. BÀI TẬP TỰ LUẬN. BÀI TẬP TỔNG ÔN CHƯƠNG VI. A. BÀI TẬP TRẮC NGHIỆM. B. BÀI TẬP TỰ LUẬN.
Chuyên đề hàm số mũ và hàm số lôgarit Toán 11 KNTTVCS
Tài liệu gồm 266 trang, bao gồm lý thuyết, hướng dẫn giải bài tập trong sách giáo khoa, các dạng bài tập tự luận và hệ thống bài tập trắc nghiệm chuyên đề hàm số mũ và hàm số lôgarit trong chương trình SGK Toán 11 Kết Nối Tri Thức Với Cuộc Sống (viết tắt: Toán 11 KNTTVCS), có đáp án và lời giải chi tiết. BÀI 18 . LŨY THỪA VỚI SỐ MŨ THỰC. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Tính giá trị của biểu thức. + Dạng 2. Biến đổi, rút gọn, biểu diễn các biểu thức. + Dạng 3. Bài toán lãi suất kép – dân số. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Rút gọn biểu thức lũy thừa. + Dạng 2. Tính giá trị biểu thức. + Dạng 3. So sánh các biểu thức chứa lũy thừa. + Dạng 4. Bài toán lãi suất – dân số. BÀI 19 . LÔGARIT. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. BÀI 20 . HÀM SỐ MŨ – HÀM SỐ LÔGARIT. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Tìm tập xác định của hàm số mũ – lôgarit. + Dạng 2. Bài toán lãi suất kép. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Bài tập trắc nghiệm trích từ đề tham khảo và đề chính thức của Bộ Giáo dục và Đào tạo từ năm 2017 đến nay. + Dạng 1. Tập xác định. + Dạng 2. Sự biến thiên. + Dạng 3. Đồ thị. + Dạng 4. Bài toán lãi suất. BÀI 21 . PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH – MŨ – HÀM SỐ LÔGARIT. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Phương trình mũ. + Dạng 2. Phương trình lôgarit. + Dạng 3. Bất phương trình mũ. + Dạng 4. Bất phương trình lôgarit. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. + Bài tập trắc nghiệm trích từ đề tham khảo và đề chính thức của Bộ Giáo dục và Đào tạo từ năm 2017 đến nay. + Dạng 1. Phương trình mũ. + Dạng 2. Phương trình lôgarit. + Dạng 3. Bất phương trình mũ. + Dạng 4. Bất phương trình lôgarit.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6